How to Solve Combinatorial Optimization Problems using Real Quantum Machines: A Recent Survey

A combinatorial optimization problem (COP) is the problem of finding the optimal solution in a finite set. When the size of the feasible solution set is large, the complexity of the problem increases, and it is not easy to solve in a reasonable time with the current classical computer technology. Qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Heng, Sovanmonynuth, Kim, Dongmin, Kim, Taekyung, Han, Youngsun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combinatorial optimization problem (COP) is the problem of finding the optimal solution in a finite set. When the size of the feasible solution set is large, the complexity of the problem increases, and it is not easy to solve in a reasonable time with the current classical computer technology. Quantum annealing (QA) is a method that replaces classical simulated annealing (SA) methods that do not solve these cases. Therefore, several attempts have been made to solve this problem using a special-purpose quantum annealer to which the QA method is applied. In this survey, we analyze recent studies that solve real-scale COPs using quantum annealers. Through this, we discuss how to reduce the size of the COP to be input to overcome the hardware limitations of the existing quantum annealer. Additionally, we demonstrated the applicability of quantum annealer to COP on a practical scale by comparing and analyzing the results of the classical simulated annealing (SA) and QA method from each study.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3218908