Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor
Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-01, Vol.70 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Yu, Fei Kong, Xinxin Mokbel, Abdulmajeed Abdullah Mohammed Yao, Wei Cai, Shuo |
description | Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices. |
doi_str_mv | 10.1109/TCSII.2022.3218468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9933872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9933872</ieee_id><sourcerecordid>2756556623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</originalsourceid><addsrcrecordid>eNo9kcFOGzEQhldVK5XSvgBcLHFlU3u8Xq-PUaAkUqCHUnFcOd4xGJz1Ym-geR2etE5CK400o5n_m9HoL4oTRieMUfX9dvZrsZgABZhwYE1VNx-KIyZEU3Kp2MddXalSykp-Lr6k9EgpKMrhqHibhfXg8Q-52PZ67Uw6J3Mdu1cdkSx2kzX2ox5d6Inuu9zS90guexO3w745HQbvzEEQLLne-NElE4P35Dqz0aXRvSCZh8E69B25wU3UPqfxNcQncufGB6LJTXhBT5bB5NHU7Il_dIhfi09W-4Tf3vNx8fvH5e1sXi5_Xi1m02VpOJVjqVCs6AprqwCs6JiyHTaUNbVsJK2MBislW3VKgqxsDpAAmgtUVSWM4St-XJwd9g4xPG8wje1j2MQ-n2xBilqIugaeVXBQ5SdTimjbIbq1jtuW0XbnRbv3ot150b57kaHTA-QQ8T-gFOeNBP4XjXKIeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756556623</pqid></control><display><type>article</type><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</creator><creatorcontrib>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</creatorcontrib><description>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3218468</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Complexity ; Controllability ; Digital electronics ; Eigenvalues and eigenfunctions ; Electric components ; Encryption ; Entropy (Information theory) ; Field programmable gate arrays ; FPGA ; Image Encryption ; Mathematical models ; Memeristive Hopfield neural network (MHNN) ; Memristor ; Memristors ; Multiscroll ; Neural networks ; Neurons ; Nonvolatile memory ; Pseudorandom ; Random numbers ; Signal generators ; Synapses</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</citedby><cites>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</cites><orcidid>0000-0002-3091-7640 ; 0000-0003-4375-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9933872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9933872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Kong, Xinxin</creatorcontrib><creatorcontrib>Mokbel, Abdulmajeed Abdullah Mohammed</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</description><subject>Circuit design</subject><subject>Complexity</subject><subject>Controllability</subject><subject>Digital electronics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electric components</subject><subject>Encryption</subject><subject>Entropy (Information theory)</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Image Encryption</subject><subject>Mathematical models</subject><subject>Memeristive Hopfield neural network (MHNN)</subject><subject>Memristor</subject><subject>Memristors</subject><subject>Multiscroll</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonvolatile memory</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Signal generators</subject><subject>Synapses</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFOGzEQhldVK5XSvgBcLHFlU3u8Xq-PUaAkUqCHUnFcOd4xGJz1Ym-geR2etE5CK400o5n_m9HoL4oTRieMUfX9dvZrsZgABZhwYE1VNx-KIyZEU3Kp2MddXalSykp-Lr6k9EgpKMrhqHibhfXg8Q-52PZ67Uw6J3Mdu1cdkSx2kzX2ox5d6Inuu9zS90guexO3w745HQbvzEEQLLne-NElE4P35Dqz0aXRvSCZh8E69B25wU3UPqfxNcQncufGB6LJTXhBT5bB5NHU7Il_dIhfi09W-4Tf3vNx8fvH5e1sXi5_Xi1m02VpOJVjqVCs6AprqwCs6JiyHTaUNbVsJK2MBislW3VKgqxsDpAAmgtUVSWM4St-XJwd9g4xPG8wje1j2MQ-n2xBilqIugaeVXBQ5SdTimjbIbq1jtuW0XbnRbv3ot150b57kaHTA-QQ8T-gFOeNBP4XjXKIeA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yu, Fei</creator><creator>Kong, Xinxin</creator><creator>Mokbel, Abdulmajeed Abdullah Mohammed</creator><creator>Yao, Wei</creator><creator>Cai, Shuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3091-7640</orcidid><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid></search><sort><creationdate>20230101</creationdate><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><author>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Complexity</topic><topic>Controllability</topic><topic>Digital electronics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electric components</topic><topic>Encryption</topic><topic>Entropy (Information theory)</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Image Encryption</topic><topic>Mathematical models</topic><topic>Memeristive Hopfield neural network (MHNN)</topic><topic>Memristor</topic><topic>Memristors</topic><topic>Multiscroll</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonvolatile memory</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Signal generators</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Kong, Xinxin</creatorcontrib><creatorcontrib>Mokbel, Abdulmajeed Abdullah Mohammed</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Fei</au><au>Kong, Xinxin</au><au>Mokbel, Abdulmajeed Abdullah Mohammed</au><au>Yao, Wei</au><au>Cai, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3218468</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3091-7640</orcidid><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.1-1 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_9933872 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit design Complexity Controllability Digital electronics Eigenvalues and eigenfunctions Electric components Encryption Entropy (Information theory) Field programmable gate arrays FPGA Image Encryption Mathematical models Memeristive Hopfield neural network (MHNN) Memristor Memristors Multiscroll Neural networks Neurons Nonvolatile memory Pseudorandom Random numbers Signal generators Synapses |
title | Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Dynamics,%20Hardware%20Implementation%20and%20Image%20Encryption%20Application%20of%20Multiscroll%20Memeristive%20Hopfield%20Neural%20Network%20With%20a%20Novel%20Local%20Active%20Memeristor&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Yu,%20Fei&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3218468&rft_dat=%3Cproquest_RIE%3E2756556623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756556623&rft_id=info:pmid/&rft_ieee_id=9933872&rfr_iscdi=true |