Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor

Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-01, Vol.70 (1), p.1-1
Hauptverfasser: Yu, Fei, Kong, Xinxin, Mokbel, Abdulmajeed Abdullah Mohammed, Yao, Wei, Cai, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Yu, Fei
Kong, Xinxin
Mokbel, Abdulmajeed Abdullah Mohammed
Yao, Wei
Cai, Shuo
description Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.
doi_str_mv 10.1109/TCSII.2022.3218468
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9933872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9933872</ieee_id><sourcerecordid>2756556623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</originalsourceid><addsrcrecordid>eNo9kcFOGzEQhldVK5XSvgBcLHFlU3u8Xq-PUaAkUqCHUnFcOd4xGJz1Ym-geR2etE5CK400o5n_m9HoL4oTRieMUfX9dvZrsZgABZhwYE1VNx-KIyZEU3Kp2MddXalSykp-Lr6k9EgpKMrhqHibhfXg8Q-52PZ67Uw6J3Mdu1cdkSx2kzX2ox5d6Inuu9zS90guexO3w745HQbvzEEQLLne-NElE4P35Dqz0aXRvSCZh8E69B25wU3UPqfxNcQncufGB6LJTXhBT5bB5NHU7Il_dIhfi09W-4Tf3vNx8fvH5e1sXi5_Xi1m02VpOJVjqVCs6AprqwCs6JiyHTaUNbVsJK2MBislW3VKgqxsDpAAmgtUVSWM4St-XJwd9g4xPG8wje1j2MQ-n2xBilqIugaeVXBQ5SdTimjbIbq1jtuW0XbnRbv3ot150b57kaHTA-QQ8T-gFOeNBP4XjXKIeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756556623</pqid></control><display><type>article</type><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</creator><creatorcontrib>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</creatorcontrib><description>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3218468</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Complexity ; Controllability ; Digital electronics ; Eigenvalues and eigenfunctions ; Electric components ; Encryption ; Entropy (Information theory) ; Field programmable gate arrays ; FPGA ; Image Encryption ; Mathematical models ; Memeristive Hopfield neural network (MHNN) ; Memristor ; Memristors ; Multiscroll ; Neural networks ; Neurons ; Nonvolatile memory ; Pseudorandom ; Random numbers ; Signal generators ; Synapses</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</citedby><cites>FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</cites><orcidid>0000-0002-3091-7640 ; 0000-0003-4375-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9933872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9933872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Kong, Xinxin</creatorcontrib><creatorcontrib>Mokbel, Abdulmajeed Abdullah Mohammed</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</description><subject>Circuit design</subject><subject>Complexity</subject><subject>Controllability</subject><subject>Digital electronics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electric components</subject><subject>Encryption</subject><subject>Entropy (Information theory)</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Image Encryption</subject><subject>Mathematical models</subject><subject>Memeristive Hopfield neural network (MHNN)</subject><subject>Memristor</subject><subject>Memristors</subject><subject>Multiscroll</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonvolatile memory</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Signal generators</subject><subject>Synapses</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFOGzEQhldVK5XSvgBcLHFlU3u8Xq-PUaAkUqCHUnFcOd4xGJz1Ym-geR2etE5CK400o5n_m9HoL4oTRieMUfX9dvZrsZgABZhwYE1VNx-KIyZEU3Kp2MddXalSykp-Lr6k9EgpKMrhqHibhfXg8Q-52PZ67Uw6J3Mdu1cdkSx2kzX2ox5d6Inuu9zS90guexO3w745HQbvzEEQLLne-NElE4P35Dqz0aXRvSCZh8E69B25wU3UPqfxNcQncufGB6LJTXhBT5bB5NHU7Il_dIhfi09W-4Tf3vNx8fvH5e1sXi5_Xi1m02VpOJVjqVCs6AprqwCs6JiyHTaUNbVsJK2MBislW3VKgqxsDpAAmgtUVSWM4St-XJwd9g4xPG8wje1j2MQ-n2xBilqIugaeVXBQ5SdTimjbIbq1jtuW0XbnRbv3ot150b57kaHTA-QQ8T-gFOeNBP4XjXKIeA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yu, Fei</creator><creator>Kong, Xinxin</creator><creator>Mokbel, Abdulmajeed Abdullah Mohammed</creator><creator>Yao, Wei</creator><creator>Cai, Shuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3091-7640</orcidid><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid></search><sort><creationdate>20230101</creationdate><title>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</title><author>Yu, Fei ; Kong, Xinxin ; Mokbel, Abdulmajeed Abdullah Mohammed ; Yao, Wei ; Cai, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-9e5b0be6f922f5d19fde8018678704ca2f771bd97274f74f2722a35e9445cc3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Complexity</topic><topic>Controllability</topic><topic>Digital electronics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electric components</topic><topic>Encryption</topic><topic>Entropy (Information theory)</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Image Encryption</topic><topic>Mathematical models</topic><topic>Memeristive Hopfield neural network (MHNN)</topic><topic>Memristor</topic><topic>Memristors</topic><topic>Multiscroll</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonvolatile memory</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Signal generators</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Kong, Xinxin</creatorcontrib><creatorcontrib>Mokbel, Abdulmajeed Abdullah Mohammed</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Fei</au><au>Kong, Xinxin</au><au>Mokbel, Abdulmajeed Abdullah Mohammed</au><au>Yao, Wei</au><au>Cai, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Because of the nonlinearity and memory, memristors are the most suitable electrical component for simulating synapses. A novel local active and nonvolatile memristor is designed. By circuit experiments, its memristive properties are verified. By introducing this memristor, this paper constructs a 4D memristive Hopfield neural network (MHNN) which can perform complex dynamics, such as controllable double-scrolls attractors and controllable initial offset boosting coexistence. Compared with other multiscroll chaotic systems, the autonomy equation of the system is smooth for discarding the sign function. In addition, this MHNN performs well in image encryption applications for the significant complexity of multiscroll. Through safety analysis, the information entropy of the 512×512 Lena graph is 7.9993, which is very close to the ideal value of 8. Besides, the number of pixels changing rates (NPCR) and the unified averaged changed intensity (UACI) are 99.6097% and 33.4621%, which are almost equal ideal values. Finally, this paper designs the digital circuit of the multiscroll MHNN signal generator and verifies the function with the help of a field programmable gate array (FPGA) and oscilloscope. Besides, by designing a pseudo-random number generation circuit, FPGA can directly encrypt the image and transmit it to the input and output devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3218468</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3091-7640</orcidid><orcidid>https://orcid.org/0000-0003-4375-3187</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_9933872
source IEEE Electronic Library (IEL)
subjects Circuit design
Complexity
Controllability
Digital electronics
Eigenvalues and eigenfunctions
Electric components
Encryption
Entropy (Information theory)
Field programmable gate arrays
FPGA
Image Encryption
Mathematical models
Memeristive Hopfield neural network (MHNN)
Memristor
Memristors
Multiscroll
Neural networks
Neurons
Nonvolatile memory
Pseudorandom
Random numbers
Signal generators
Synapses
title Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network With a Novel Local Active Memeristor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Dynamics,%20Hardware%20Implementation%20and%20Image%20Encryption%20Application%20of%20Multiscroll%20Memeristive%20Hopfield%20Neural%20Network%20With%20a%20Novel%20Local%20Active%20Memeristor&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Yu,%20Fei&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3218468&rft_dat=%3Cproquest_RIE%3E2756556623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756556623&rft_id=info:pmid/&rft_ieee_id=9933872&rfr_iscdi=true