Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles

The hybrid system containing the fuel cell and energy storage sources contributes to realizing hydrogen energy in road traffic applications. It is meaningful to evaluate the different forms of system topology. In this work, the quantitative comparison of topologies and sensitivity analysis of system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on transportation electrification 2023-12, Vol.9 (4), p.1-1
Hauptverfasser: Li, Mince, Yu, Pengli, Wang, Yujie, Sun, Zhendong, Chen, Zonghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE transactions on transportation electrification
container_volume 9
creator Li, Mince
Yu, Pengli
Wang, Yujie
Sun, Zhendong
Chen, Zonghai
description The hybrid system containing the fuel cell and energy storage sources contributes to realizing hydrogen energy in road traffic applications. It is meaningful to evaluate the different forms of system topology. In this work, the quantitative comparison of topologies and sensitivity analysis of system parameters are conducted. Firstly, the output characteristics of the fuel cell, battery, and ultracapacitor are modeled by experimental data. Secondly, the dimensions of four hybrid topologies are determined by an iterative constraint method. An energy management strategy based on dynamic programming is conducted for all topologies. Then the overall economic cost is used as an indicator for quantitative evaluation, considering the initial acquisition, hydrogen consumption, and component aging. The base-case results illustrate that the fuel/cell battery semi-active topology is the least costly one. Finally, seven parameters are analyzed to determine the system cost's key factors. The relationship between costs and driving conditions is further studied. The rankings of the normalized parameter analysis results inspire us on how to further reduce the cost of fuel cell hybrid vehicles.
doi_str_mv 10.1109/TTE.2022.3218341
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9933463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9933463</ieee_id><sourcerecordid>2904460157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-78df9e6e32341501a6fb3ce608e6134efd18c07b11a00859c283b272db3b61563</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOHR3wUvAc2d-tGlyHGVzwsCD1aOhTV81I2tq0gn97-3YEE_vHT7fx_d9ELqjZEEpUY9luVowwtiCMyp5Si_QjHHOkjyX7PLffo3mMe4IITTjmaJihj5K33vnP0dc-H1fBRt9h6uuwa_QRTvYHzuMeNlVbow2Yt_i9QEcLsA5vBnrYCdwjAPsI259wCsHZgjW4Hf4ssZBvEVXbeUizM_zBr2tV2WxSbYvT8_FcpsYpuiQ5LJpFQjgbCqfEVqJtuYGBJEgKE-hbag0JK8prQiRmTJM8prlrKl5LWgm-A16ON3tg_8-QBz0zh_CVDtqpkiaiunjfKLIiTLBxxig1X2w-yqMmhJ9FKknkfooUp9FTpH7U8QCwB-uFOep4PwX4GZt_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904460157</pqid></control><display><type>article</type><title>Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Mince ; Yu, Pengli ; Wang, Yujie ; Sun, Zhendong ; Chen, Zonghai</creator><creatorcontrib>Li, Mince ; Yu, Pengli ; Wang, Yujie ; Sun, Zhendong ; Chen, Zonghai</creatorcontrib><description>The hybrid system containing the fuel cell and energy storage sources contributes to realizing hydrogen energy in road traffic applications. It is meaningful to evaluate the different forms of system topology. In this work, the quantitative comparison of topologies and sensitivity analysis of system parameters are conducted. Firstly, the output characteristics of the fuel cell, battery, and ultracapacitor are modeled by experimental data. Secondly, the dimensions of four hybrid topologies are determined by an iterative constraint method. An energy management strategy based on dynamic programming is conducted for all topologies. Then the overall economic cost is used as an indicator for quantitative evaluation, considering the initial acquisition, hydrogen consumption, and component aging. The base-case results illustrate that the fuel/cell battery semi-active topology is the least costly one. Finally, seven parameters are analyzed to determine the system cost's key factors. The relationship between costs and driving conditions is further studied. The rankings of the normalized parameter analysis results inspire us on how to further reduce the cost of fuel cell hybrid vehicles.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2022.3218341</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Battery ; Cost analysis ; Costs ; Driving conditions ; Dynamic programming ; Economic impact ; Electric vehicles ; Energy management ; Energy storage ; Fuel cell ; Fuel cells ; Fuels ; Hybrid systems ; Hybrid topology ; Hybrid vehicles ; Hydrogen ; Iterative methods ; Parameter sensitivity ; Quantitative analysis ; Sensitivity analysis ; Topology</subject><ispartof>IEEE transactions on transportation electrification, 2023-12, Vol.9 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-78df9e6e32341501a6fb3ce608e6134efd18c07b11a00859c283b272db3b61563</citedby><cites>FETCH-LOGICAL-c291t-78df9e6e32341501a6fb3ce608e6134efd18c07b11a00859c283b272db3b61563</cites><orcidid>0000-0003-1341-8599 ; 0000-0001-9312-9089 ; 0000-0001-5722-2673 ; 0000-0001-9742-1351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9933463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9933463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Mince</creatorcontrib><creatorcontrib>Yu, Pengli</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Sun, Zhendong</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><title>Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>The hybrid system containing the fuel cell and energy storage sources contributes to realizing hydrogen energy in road traffic applications. It is meaningful to evaluate the different forms of system topology. In this work, the quantitative comparison of topologies and sensitivity analysis of system parameters are conducted. Firstly, the output characteristics of the fuel cell, battery, and ultracapacitor are modeled by experimental data. Secondly, the dimensions of four hybrid topologies are determined by an iterative constraint method. An energy management strategy based on dynamic programming is conducted for all topologies. Then the overall economic cost is used as an indicator for quantitative evaluation, considering the initial acquisition, hydrogen consumption, and component aging. The base-case results illustrate that the fuel/cell battery semi-active topology is the least costly one. Finally, seven parameters are analyzed to determine the system cost's key factors. The relationship between costs and driving conditions is further studied. The rankings of the normalized parameter analysis results inspire us on how to further reduce the cost of fuel cell hybrid vehicles.</description><subject>Batteries</subject><subject>Battery</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>Driving conditions</subject><subject>Dynamic programming</subject><subject>Economic impact</subject><subject>Electric vehicles</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hybrid systems</subject><subject>Hybrid topology</subject><subject>Hybrid vehicles</subject><subject>Hydrogen</subject><subject>Iterative methods</subject><subject>Parameter sensitivity</subject><subject>Quantitative analysis</subject><subject>Sensitivity analysis</subject><subject>Topology</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOHR3wUvAc2d-tGlyHGVzwsCD1aOhTV81I2tq0gn97-3YEE_vHT7fx_d9ELqjZEEpUY9luVowwtiCMyp5Si_QjHHOkjyX7PLffo3mMe4IITTjmaJihj5K33vnP0dc-H1fBRt9h6uuwa_QRTvYHzuMeNlVbow2Yt_i9QEcLsA5vBnrYCdwjAPsI259wCsHZgjW4Hf4ssZBvEVXbeUizM_zBr2tV2WxSbYvT8_FcpsYpuiQ5LJpFQjgbCqfEVqJtuYGBJEgKE-hbag0JK8prQiRmTJM8prlrKl5LWgm-A16ON3tg_8-QBz0zh_CVDtqpkiaiunjfKLIiTLBxxig1X2w-yqMmhJ9FKknkfooUp9FTpH7U8QCwB-uFOep4PwX4GZt_g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Li, Mince</creator><creator>Yu, Pengli</creator><creator>Wang, Yujie</creator><creator>Sun, Zhendong</creator><creator>Chen, Zonghai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1341-8599</orcidid><orcidid>https://orcid.org/0000-0001-9312-9089</orcidid><orcidid>https://orcid.org/0000-0001-5722-2673</orcidid><orcidid>https://orcid.org/0000-0001-9742-1351</orcidid></search><sort><creationdate>20231201</creationdate><title>Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles</title><author>Li, Mince ; Yu, Pengli ; Wang, Yujie ; Sun, Zhendong ; Chen, Zonghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-78df9e6e32341501a6fb3ce608e6134efd18c07b11a00859c283b272db3b61563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Battery</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>Driving conditions</topic><topic>Dynamic programming</topic><topic>Economic impact</topic><topic>Electric vehicles</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hybrid systems</topic><topic>Hybrid topology</topic><topic>Hybrid vehicles</topic><topic>Hydrogen</topic><topic>Iterative methods</topic><topic>Parameter sensitivity</topic><topic>Quantitative analysis</topic><topic>Sensitivity analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mince</creatorcontrib><creatorcontrib>Yu, Pengli</creatorcontrib><creatorcontrib>Wang, Yujie</creatorcontrib><creatorcontrib>Sun, Zhendong</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Mince</au><au>Yu, Pengli</au><au>Wang, Yujie</au><au>Sun, Zhendong</au><au>Chen, Zonghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>The hybrid system containing the fuel cell and energy storage sources contributes to realizing hydrogen energy in road traffic applications. It is meaningful to evaluate the different forms of system topology. In this work, the quantitative comparison of topologies and sensitivity analysis of system parameters are conducted. Firstly, the output characteristics of the fuel cell, battery, and ultracapacitor are modeled by experimental data. Secondly, the dimensions of four hybrid topologies are determined by an iterative constraint method. An energy management strategy based on dynamic programming is conducted for all topologies. Then the overall economic cost is used as an indicator for quantitative evaluation, considering the initial acquisition, hydrogen consumption, and component aging. The base-case results illustrate that the fuel/cell battery semi-active topology is the least costly one. Finally, seven parameters are analyzed to determine the system cost's key factors. The relationship between costs and driving conditions is further studied. The rankings of the normalized parameter analysis results inspire us on how to further reduce the cost of fuel cell hybrid vehicles.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2022.3218341</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1341-8599</orcidid><orcidid>https://orcid.org/0000-0001-9312-9089</orcidid><orcidid>https://orcid.org/0000-0001-5722-2673</orcidid><orcidid>https://orcid.org/0000-0001-9742-1351</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7782
ispartof IEEE transactions on transportation electrification, 2023-12, Vol.9 (4), p.1-1
issn 2332-7782
2577-4212
2332-7782
language eng
recordid cdi_ieee_primary_9933463
source IEEE Electronic Library (IEL)
subjects Batteries
Battery
Cost analysis
Costs
Driving conditions
Dynamic programming
Economic impact
Electric vehicles
Energy management
Energy storage
Fuel cell
Fuel cells
Fuels
Hybrid systems
Hybrid topology
Hybrid vehicles
Hydrogen
Iterative methods
Parameter sensitivity
Quantitative analysis
Sensitivity analysis
Topology
title Topology Comparison and Sensitivity Analysis of Fuel Cell Hybrid Systems for Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Comparison%20and%20Sensitivity%20Analysis%20of%20Fuel%20Cell%20Hybrid%20Systems%20for%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Li,%20Mince&rft.date=2023-12-01&rft.volume=9&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2022.3218341&rft_dat=%3Cproquest_RIE%3E2904460157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904460157&rft_id=info:pmid/&rft_ieee_id=9933463&rfr_iscdi=true