Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers

In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-02, Vol.69 (2), p.1282-1294
Hauptverfasser: Zhang, Kai, Lai, Xuejia, Wang, Lei, Guan, Jie, Hu, Bin, Wang, Senpeng, Shi, Tairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1294
container_issue 2
container_start_page 1282
container_title IEEE transactions on information theory
container_volume 69
creator Zhang, Kai
Lai, Xuejia
Wang, Lei
Guan, Jie
Hu, Bin
Wang, Senpeng
Shi, Tairong
description In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by {\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) (where n is the block size, n_{1} is the number of active bits for the starting point of automatic method, R is the length of the targeted rounds and c is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.
doi_str_mv 10.1109/TIT.2022.3218186
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9932440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9932440</ieee_id><sourcerecordid>2767318870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8rHJsWytFoqFUrG3kN3N4ta2WZMt0n9vpMXDMAzzvMPwIHRPyYhSop9Ws9UICMCIAVVUyQs0oELkmZaCX6IBIVRlmnN1jW5i3KSRCwoD9LH0ve1bv7fbbL1Y4knbNC64fd_aLS7CsettWh1jG7Hd16nw-ND7XYpUeBrszv348IUbH_D4bZIt17hou08X4i26auw2urtzH6L36fOqeM3mi5dZMZ5nFXDgWanr3FKhWMmBlE5qy4UQRLqyFLZi0EBJKLG5ZpZKrSQAVDkQokVZ1xIYG6LH090u-O-Di73Z-ENIL0cDucwZVSoniSInqgo-xuAa04V2Z8PRUGL-9Jmkz_zpM2d9KfJwirTOuX9cawacE_YLj7tptw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767318870</pqid></control><display><type>article</type><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</creator><creatorcontrib>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</creatorcontrib><description><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3218186</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; AND-RX ciphers ; automatic searching method ; Block cipher ; Ciphers ; Complexity theory ; Computational modeling ; cryptanalysis ; Cryptography ; Encryption ; NIST ; rotational-XOR differential cryptanalysis ; Schedules ; Searching ; Subspaces ; Time complexity</subject><ispartof>IEEE transactions on information theory, 2023-02, Vol.69 (2), p.1282-1294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</citedby><cites>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</cites><orcidid>0000-0002-2306-3720 ; 0000-0002-0827-1513 ; 0000-0002-2749-0930 ; 0000-0002-6550-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9932440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9932440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lai, Xuejia</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Guan, Jie</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Senpeng</creatorcontrib><creatorcontrib>Shi, Tairong</creatorcontrib><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></description><subject>Algorithms</subject><subject>AND-RX ciphers</subject><subject>automatic searching method</subject><subject>Block cipher</subject><subject>Ciphers</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>cryptanalysis</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>NIST</subject><subject>rotational-XOR differential cryptanalysis</subject><subject>Schedules</subject><subject>Searching</subject><subject>Subspaces</subject><subject>Time complexity</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8rHJsWytFoqFUrG3kN3N4ta2WZMt0n9vpMXDMAzzvMPwIHRPyYhSop9Ws9UICMCIAVVUyQs0oELkmZaCX6IBIVRlmnN1jW5i3KSRCwoD9LH0ve1bv7fbbL1Y4knbNC64fd_aLS7CsettWh1jG7Hd16nw-ND7XYpUeBrszv348IUbH_D4bZIt17hou08X4i26auw2urtzH6L36fOqeM3mi5dZMZ5nFXDgWanr3FKhWMmBlE5qy4UQRLqyFLZi0EBJKLG5ZpZKrSQAVDkQokVZ1xIYG6LH090u-O-Di73Z-ENIL0cDucwZVSoniSInqgo-xuAa04V2Z8PRUGL-9Jmkz_zpM2d9KfJwirTOuX9cawacE_YLj7tptw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Kai</creator><creator>Lai, Xuejia</creator><creator>Wang, Lei</creator><creator>Guan, Jie</creator><creator>Hu, Bin</creator><creator>Wang, Senpeng</creator><creator>Shi, Tairong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2306-3720</orcidid><orcidid>https://orcid.org/0000-0002-0827-1513</orcidid><orcidid>https://orcid.org/0000-0002-2749-0930</orcidid><orcidid>https://orcid.org/0000-0002-6550-6518</orcidid></search><sort><creationdate>20230201</creationdate><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><author>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>AND-RX ciphers</topic><topic>automatic searching method</topic><topic>Block cipher</topic><topic>Ciphers</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>cryptanalysis</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>NIST</topic><topic>rotational-XOR differential cryptanalysis</topic><topic>Schedules</topic><topic>Searching</topic><topic>Subspaces</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lai, Xuejia</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Guan, Jie</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Senpeng</creatorcontrib><creatorcontrib>Shi, Tairong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kai</au><au>Lai, Xuejia</au><au>Wang, Lei</au><au>Guan, Jie</au><au>Hu, Bin</au><au>Wang, Senpeng</au><au>Shi, Tairong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>69</volume><issue>2</issue><spage>1282</spage><epage>1294</epage><pages>1282-1294</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3218186</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2306-3720</orcidid><orcidid>https://orcid.org/0000-0002-0827-1513</orcidid><orcidid>https://orcid.org/0000-0002-2749-0930</orcidid><orcidid>https://orcid.org/0000-0002-6550-6518</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2023-02, Vol.69 (2), p.1282-1294
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9932440
source IEEE Electronic Library (IEL)
subjects Algorithms
AND-RX ciphers
automatic searching method
Block cipher
Ciphers
Complexity theory
Computational modeling
cryptanalysis
Cryptography
Encryption
NIST
rotational-XOR differential cryptanalysis
Schedules
Searching
Subspaces
Time complexity
title Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational-XOR%20Differential%20Cryptanalysis%20and%20an%20Automatic%20Framework%20for%20AND-RX%20Ciphers&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Kai&rft.date=2023-02-01&rft.volume=69&rft.issue=2&rft.spage=1282&rft.epage=1294&rft.pages=1282-1294&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3218186&rft_dat=%3Cproquest_RIE%3E2767318870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767318870&rft_id=info:pmid/&rft_ieee_id=9932440&rfr_iscdi=true