Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers
In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2023-02, Vol.69 (2), p.1282-1294 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1294 |
---|---|
container_issue | 2 |
container_start_page | 1282 |
container_title | IEEE transactions on information theory |
container_volume | 69 |
creator | Zhang, Kai Lai, Xuejia Wang, Lei Guan, Jie Hu, Bin Wang, Senpeng Shi, Tairong |
description | In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by {\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) (where n is the block size, n_{1} is the number of active bits for the starting point of automatic method, R is the length of the targeted rounds and c is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper. |
doi_str_mv | 10.1109/TIT.2022.3218186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9932440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9932440</ieee_id><sourcerecordid>2767318870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8rHJsWytFoqFUrG3kN3N4ta2WZMt0n9vpMXDMAzzvMPwIHRPyYhSop9Ws9UICMCIAVVUyQs0oELkmZaCX6IBIVRlmnN1jW5i3KSRCwoD9LH0ve1bv7fbbL1Y4knbNC64fd_aLS7CsettWh1jG7Hd16nw-ND7XYpUeBrszv348IUbH_D4bZIt17hou08X4i26auw2urtzH6L36fOqeM3mi5dZMZ5nFXDgWanr3FKhWMmBlE5qy4UQRLqyFLZi0EBJKLG5ZpZKrSQAVDkQokVZ1xIYG6LH090u-O-Di73Z-ENIL0cDucwZVSoniSInqgo-xuAa04V2Z8PRUGL-9Jmkz_zpM2d9KfJwirTOuX9cawacE_YLj7tptw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767318870</pqid></control><display><type>article</type><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</creator><creatorcontrib>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</creatorcontrib><description><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3218186</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; AND-RX ciphers ; automatic searching method ; Block cipher ; Ciphers ; Complexity theory ; Computational modeling ; cryptanalysis ; Cryptography ; Encryption ; NIST ; rotational-XOR differential cryptanalysis ; Schedules ; Searching ; Subspaces ; Time complexity</subject><ispartof>IEEE transactions on information theory, 2023-02, Vol.69 (2), p.1282-1294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</citedby><cites>FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</cites><orcidid>0000-0002-2306-3720 ; 0000-0002-0827-1513 ; 0000-0002-2749-0930 ; 0000-0002-6550-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9932440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9932440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lai, Xuejia</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Guan, Jie</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Senpeng</creatorcontrib><creatorcontrib>Shi, Tairong</creatorcontrib><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></description><subject>Algorithms</subject><subject>AND-RX ciphers</subject><subject>automatic searching method</subject><subject>Block cipher</subject><subject>Ciphers</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>cryptanalysis</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>NIST</subject><subject>rotational-XOR differential cryptanalysis</subject><subject>Schedules</subject><subject>Searching</subject><subject>Subspaces</subject><subject>Time complexity</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8rHJsWytFoqFUrG3kN3N4ta2WZMt0n9vpMXDMAzzvMPwIHRPyYhSop9Ws9UICMCIAVVUyQs0oELkmZaCX6IBIVRlmnN1jW5i3KSRCwoD9LH0ve1bv7fbbL1Y4knbNC64fd_aLS7CsettWh1jG7Hd16nw-ND7XYpUeBrszv348IUbH_D4bZIt17hou08X4i26auw2urtzH6L36fOqeM3mi5dZMZ5nFXDgWanr3FKhWMmBlE5qy4UQRLqyFLZi0EBJKLG5ZpZKrSQAVDkQokVZ1xIYG6LH090u-O-Di73Z-ENIL0cDucwZVSoniSInqgo-xuAa04V2Z8PRUGL-9Jmkz_zpM2d9KfJwirTOuX9cawacE_YLj7tptw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Kai</creator><creator>Lai, Xuejia</creator><creator>Wang, Lei</creator><creator>Guan, Jie</creator><creator>Hu, Bin</creator><creator>Wang, Senpeng</creator><creator>Shi, Tairong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2306-3720</orcidid><orcidid>https://orcid.org/0000-0002-0827-1513</orcidid><orcidid>https://orcid.org/0000-0002-2749-0930</orcidid><orcidid>https://orcid.org/0000-0002-6550-6518</orcidid></search><sort><creationdate>20230201</creationdate><title>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</title><author>Zhang, Kai ; Lai, Xuejia ; Wang, Lei ; Guan, Jie ; Hu, Bin ; Wang, Senpeng ; Shi, Tairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2424-b9d7a1583b420be69a455506ebb5ac32f2b010a793a16986222c720095bdd6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>AND-RX ciphers</topic><topic>automatic searching method</topic><topic>Block cipher</topic><topic>Ciphers</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>cryptanalysis</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>NIST</topic><topic>rotational-XOR differential cryptanalysis</topic><topic>Schedules</topic><topic>Searching</topic><topic>Subspaces</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lai, Xuejia</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Guan, Jie</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Wang, Senpeng</creatorcontrib><creatorcontrib>Shi, Tairong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Kai</au><au>Lai, Xuejia</au><au>Wang, Lei</au><au>Guan, Jie</au><au>Hu, Bin</au><au>Wang, Senpeng</au><au>Shi, Tairong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>69</volume><issue>2</issue><spage>1282</spage><epage>1294</epage><pages>1282-1294</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this paper, a security evaluation framework for AND-RX ciphers against rotational-XOR differential cryptanalysis is proposed. This framework first models the structure of all the possible rotational-XOR differential (abbreviated to "RXD") trails and introduces a method to calculate this structure round by round. Based on this approach, an automatic method is proposed for searching RXD trails. In this method, four strategies are proposed to derive better result and improve the efficiency. Unlike previous automations, the time complexity for this framework can be pre-computed, which is bounded by <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}\left ({{c\cdot n\cdot R^{2}\cdot C_{n}^{n_{1}}} }\right) </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the block size, <inline-formula> <tex-math notation="LaTeX">n_{1} </tex-math></inline-formula> is the number of active bits for the starting point of automatic method, <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> is the length of the targeted rounds and <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> is a fixed constant). Under the given strategies and searching subspaces, the derived RXD trails are guaranteed to be optimal. To prove the correctness and efficiency, this framework is applied to all the ten variants for SIMON and three variants for Simeck. When compared with previous RXD trails, the best improvement is up to three rounds. To validate the correctness of the derived rotational-XOR differential trails, a concrete experiment on Simeck32 is conducted and the experimental result complies with the theoretical analysis. As far as we know, for all the variants of Simeck, current longest distinguishers over all the cryptanalytic methods are obtained in this paper.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3218186</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2306-3720</orcidid><orcidid>https://orcid.org/0000-0002-0827-1513</orcidid><orcidid>https://orcid.org/0000-0002-2749-0930</orcidid><orcidid>https://orcid.org/0000-0002-6550-6518</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2023-02, Vol.69 (2), p.1282-1294 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9932440 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms AND-RX ciphers automatic searching method Block cipher Ciphers Complexity theory Computational modeling cryptanalysis Cryptography Encryption NIST rotational-XOR differential cryptanalysis Schedules Searching Subspaces Time complexity |
title | Rotational-XOR Differential Cryptanalysis and an Automatic Framework for AND-RX Ciphers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational-XOR%20Differential%20Cryptanalysis%20and%20an%20Automatic%20Framework%20for%20AND-RX%20Ciphers&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Kai&rft.date=2023-02-01&rft.volume=69&rft.issue=2&rft.spage=1282&rft.epage=1294&rft.pages=1282-1294&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3218186&rft_dat=%3Cproquest_RIE%3E2767318870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767318870&rft_id=info:pmid/&rft_ieee_id=9932440&rfr_iscdi=true |