Support vector black-box interpretation in ventricular arrhythmia discrimination

A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE engineering in medicine and biology magazine 2002-01, Vol.21 (1), p.27-35
Hauptverfasser: Rojo-Alvarez, J.L., Arenal-Maiz, A., Artes-Rodriguez, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 27
container_title IEEE engineering in medicine and biology magazine
container_volume 21
creator Rojo-Alvarez, J.L.
Arenal-Maiz, A.
Artes-Rodriguez, A.
description A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.
doi_str_mv 10.1109/51.993191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_993191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>993191</ieee_id><sourcerecordid>28812221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgiruuHrx6kOJB8NA1kyZNcpTFFywoqOeStFO2a7etaSruvze6i4IXT8OQb4bMDCHHQKcAVF8KmGqdgIYdMgadyJiDSnfJmMpExwKkGJGDvl9SCpxLsU9GEJTQSozJ49PQda3z0TvmvnWRrU3-Gtv2I6oaj65z6I2v2iakgTTeVflQGxcZ5xZrv1hVJiqqPnfVqmq-4SHZK03d49E2TsjLzfXz7C6eP9zez67mcZ7oxMdpKQ1PKVXI0pKq0lJMJTUFl1hgbmWqZWk0SFqklhas5EyiVUkiVIjS2mRCzjd9O9e-Ddj7bBX-gXVtGmyHPpMgNOOa_QuZUsAYgwDP_sBlO7gmDJEpxblIpeQBXWxQ7tq-d1hmXZjduHUGNPs6RiYg2xwj2NNtw8GusPiV2-0HcLIBFSL-PG-rPwH6j41D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884456774</pqid></control><display><type>article</type><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><source>IEEE Electronic Library (IEL)</source><creator>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</creator><creatorcontrib>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</creatorcontrib><description>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.993191</identifier><identifier>PMID: 11935985</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Backpropagation algorithms ; Bundle of His - physiopathology ; Cardiology ; Covariance matrix ; Diagnosis, Differential ; Electrocardiography - methods ; Electrocardiography - statistics &amp; numerical data ; Evaluation Studies as Topic ; Feedback ; Kernel ; Machine learning ; Mathematical model ; Models, Cardiovascular ; Models, Statistical ; Neural Networks (Computer) ; Pattern Recognition, Automated ; Sensitivity and Specificity ; Strontium ; Studies ; Support vector machine classification ; Support vector machines ; Tachycardia, Supraventricular - diagnosis ; Tachycardia, Supraventricular - physiopathology ; Tachycardia, Ventricular - diagnosis ; Tachycardia, Ventricular - physiopathology</subject><ispartof>IEEE engineering in medicine and biology magazine, 2002-01, Vol.21 (1), p.27-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</citedby><cites>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/993191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/993191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11935985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Arenal-Maiz, A.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Backpropagation algorithms</subject><subject>Bundle of His - physiopathology</subject><subject>Cardiology</subject><subject>Covariance matrix</subject><subject>Diagnosis, Differential</subject><subject>Electrocardiography - methods</subject><subject>Electrocardiography - statistics &amp; numerical data</subject><subject>Evaluation Studies as Topic</subject><subject>Feedback</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Models, Cardiovascular</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated</subject><subject>Sensitivity and Specificity</subject><subject>Strontium</subject><subject>Studies</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Tachycardia, Supraventricular - diagnosis</subject><subject>Tachycardia, Supraventricular - physiopathology</subject><subject>Tachycardia, Ventricular - diagnosis</subject><subject>Tachycardia, Ventricular - physiopathology</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0UtLxDAQAOAgiruuHrx6kOJB8NA1kyZNcpTFFywoqOeStFO2a7etaSruvze6i4IXT8OQb4bMDCHHQKcAVF8KmGqdgIYdMgadyJiDSnfJmMpExwKkGJGDvl9SCpxLsU9GEJTQSozJ49PQda3z0TvmvnWRrU3-Gtv2I6oaj65z6I2v2iakgTTeVflQGxcZ5xZrv1hVJiqqPnfVqmq-4SHZK03d49E2TsjLzfXz7C6eP9zez67mcZ7oxMdpKQ1PKVXI0pKq0lJMJTUFl1hgbmWqZWk0SFqklhas5EyiVUkiVIjS2mRCzjd9O9e-Ddj7bBX-gXVtGmyHPpMgNOOa_QuZUsAYgwDP_sBlO7gmDJEpxblIpeQBXWxQ7tq-d1hmXZjduHUGNPs6RiYg2xwj2NNtw8GusPiV2-0HcLIBFSL-PG-rPwH6j41D</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Rojo-Alvarez, J.L.</creator><creator>Arenal-Maiz, A.</creator><creator>Artes-Rodriguez, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200201</creationdate><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><author>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Backpropagation algorithms</topic><topic>Bundle of His - physiopathology</topic><topic>Cardiology</topic><topic>Covariance matrix</topic><topic>Diagnosis, Differential</topic><topic>Electrocardiography - methods</topic><topic>Electrocardiography - statistics &amp; numerical data</topic><topic>Evaluation Studies as Topic</topic><topic>Feedback</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Models, Cardiovascular</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated</topic><topic>Sensitivity and Specificity</topic><topic>Strontium</topic><topic>Studies</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Tachycardia, Supraventricular - diagnosis</topic><topic>Tachycardia, Supraventricular - physiopathology</topic><topic>Tachycardia, Ventricular - diagnosis</topic><topic>Tachycardia, Ventricular - physiopathology</topic><toplevel>online_resources</toplevel><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Arenal-Maiz, A.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rojo-Alvarez, J.L.</au><au>Arenal-Maiz, A.</au><au>Artes-Rodriguez, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support vector black-box interpretation in ventricular arrhythmia discrimination</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>2002-01</date><risdate>2002</risdate><volume>21</volume><issue>1</issue><spage>27</spage><epage>35</epage><pages>27-35</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>11935985</pmid><doi>10.1109/51.993191</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0739-5175
ispartof IEEE engineering in medicine and biology magazine, 2002-01, Vol.21 (1), p.27-35
issn 0739-5175
1937-4186
language eng
recordid cdi_ieee_primary_993191
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Backpropagation algorithms
Bundle of His - physiopathology
Cardiology
Covariance matrix
Diagnosis, Differential
Electrocardiography - methods
Electrocardiography - statistics & numerical data
Evaluation Studies as Topic
Feedback
Kernel
Machine learning
Mathematical model
Models, Cardiovascular
Models, Statistical
Neural Networks (Computer)
Pattern Recognition, Automated
Sensitivity and Specificity
Strontium
Studies
Support vector machine classification
Support vector machines
Tachycardia, Supraventricular - diagnosis
Tachycardia, Supraventricular - physiopathology
Tachycardia, Ventricular - diagnosis
Tachycardia, Ventricular - physiopathology
title Support vector black-box interpretation in ventricular arrhythmia discrimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20vector%20black-box%20interpretation%20in%20ventricular%20arrhythmia%20discrimination&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Rojo-Alvarez,%20J.L.&rft.date=2002-01&rft.volume=21&rft.issue=1&rft.spage=27&rft.epage=35&rft.pages=27-35&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.993191&rft_dat=%3Cproquest_RIE%3E28812221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884456774&rft_id=info:pmid/11935985&rft_ieee_id=993191&rfr_iscdi=true