Support vector black-box interpretation in ventricular arrhythmia discrimination
A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical mod...
Gespeichert in:
Veröffentlicht in: | IEEE engineering in medicine and biology magazine 2002-01, Vol.21 (1), p.27-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE engineering in medicine and biology magazine |
container_volume | 21 |
creator | Rojo-Alvarez, J.L. Arenal-Maiz, A. Artes-Rodriguez, A. |
description | A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion. |
doi_str_mv | 10.1109/51.993191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_993191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>993191</ieee_id><sourcerecordid>28812221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgiruuHrx6kOJB8NA1kyZNcpTFFywoqOeStFO2a7etaSruvze6i4IXT8OQb4bMDCHHQKcAVF8KmGqdgIYdMgadyJiDSnfJmMpExwKkGJGDvl9SCpxLsU9GEJTQSozJ49PQda3z0TvmvnWRrU3-Gtv2I6oaj65z6I2v2iakgTTeVflQGxcZ5xZrv1hVJiqqPnfVqmq-4SHZK03d49E2TsjLzfXz7C6eP9zez67mcZ7oxMdpKQ1PKVXI0pKq0lJMJTUFl1hgbmWqZWk0SFqklhas5EyiVUkiVIjS2mRCzjd9O9e-Ddj7bBX-gXVtGmyHPpMgNOOa_QuZUsAYgwDP_sBlO7gmDJEpxblIpeQBXWxQ7tq-d1hmXZjduHUGNPs6RiYg2xwj2NNtw8GusPiV2-0HcLIBFSL-PG-rPwH6j41D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884456774</pqid></control><display><type>article</type><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><source>IEEE Electronic Library (IEL)</source><creator>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</creator><creatorcontrib>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</creatorcontrib><description>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.993191</identifier><identifier>PMID: 11935985</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Backpropagation algorithms ; Bundle of His - physiopathology ; Cardiology ; Covariance matrix ; Diagnosis, Differential ; Electrocardiography - methods ; Electrocardiography - statistics & numerical data ; Evaluation Studies as Topic ; Feedback ; Kernel ; Machine learning ; Mathematical model ; Models, Cardiovascular ; Models, Statistical ; Neural Networks (Computer) ; Pattern Recognition, Automated ; Sensitivity and Specificity ; Strontium ; Studies ; Support vector machine classification ; Support vector machines ; Tachycardia, Supraventricular - diagnosis ; Tachycardia, Supraventricular - physiopathology ; Tachycardia, Ventricular - diagnosis ; Tachycardia, Ventricular - physiopathology</subject><ispartof>IEEE engineering in medicine and biology magazine, 2002-01, Vol.21 (1), p.27-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</citedby><cites>FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/993191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/993191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11935985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Arenal-Maiz, A.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Backpropagation algorithms</subject><subject>Bundle of His - physiopathology</subject><subject>Cardiology</subject><subject>Covariance matrix</subject><subject>Diagnosis, Differential</subject><subject>Electrocardiography - methods</subject><subject>Electrocardiography - statistics & numerical data</subject><subject>Evaluation Studies as Topic</subject><subject>Feedback</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Models, Cardiovascular</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated</subject><subject>Sensitivity and Specificity</subject><subject>Strontium</subject><subject>Studies</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Tachycardia, Supraventricular - diagnosis</subject><subject>Tachycardia, Supraventricular - physiopathology</subject><subject>Tachycardia, Ventricular - diagnosis</subject><subject>Tachycardia, Ventricular - physiopathology</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0UtLxDAQAOAgiruuHrx6kOJB8NA1kyZNcpTFFywoqOeStFO2a7etaSruvze6i4IXT8OQb4bMDCHHQKcAVF8KmGqdgIYdMgadyJiDSnfJmMpExwKkGJGDvl9SCpxLsU9GEJTQSozJ49PQda3z0TvmvnWRrU3-Gtv2I6oaj65z6I2v2iakgTTeVflQGxcZ5xZrv1hVJiqqPnfVqmq-4SHZK03d49E2TsjLzfXz7C6eP9zez67mcZ7oxMdpKQ1PKVXI0pKq0lJMJTUFl1hgbmWqZWk0SFqklhas5EyiVUkiVIjS2mRCzjd9O9e-Ddj7bBX-gXVtGmyHPpMgNOOa_QuZUsAYgwDP_sBlO7gmDJEpxblIpeQBXWxQ7tq-d1hmXZjduHUGNPs6RiYg2xwj2NNtw8GusPiV2-0HcLIBFSL-PG-rPwH6j41D</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Rojo-Alvarez, J.L.</creator><creator>Arenal-Maiz, A.</creator><creator>Artes-Rodriguez, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200201</creationdate><title>Support vector black-box interpretation in ventricular arrhythmia discrimination</title><author>Rojo-Alvarez, J.L. ; Arenal-Maiz, A. ; Artes-Rodriguez, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6f7a46008e26f08fb0e670ad47edecb7697fa9170d6b0d2f427eb833587eb7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Backpropagation algorithms</topic><topic>Bundle of His - physiopathology</topic><topic>Cardiology</topic><topic>Covariance matrix</topic><topic>Diagnosis, Differential</topic><topic>Electrocardiography - methods</topic><topic>Electrocardiography - statistics & numerical data</topic><topic>Evaluation Studies as Topic</topic><topic>Feedback</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Models, Cardiovascular</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated</topic><topic>Sensitivity and Specificity</topic><topic>Strontium</topic><topic>Studies</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Tachycardia, Supraventricular - diagnosis</topic><topic>Tachycardia, Supraventricular - physiopathology</topic><topic>Tachycardia, Ventricular - diagnosis</topic><topic>Tachycardia, Ventricular - physiopathology</topic><toplevel>online_resources</toplevel><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Arenal-Maiz, A.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rojo-Alvarez, J.L.</au><au>Arenal-Maiz, A.</au><au>Artes-Rodriguez, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support vector black-box interpretation in ventricular arrhythmia discrimination</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>2002-01</date><risdate>2002</risdate><volume>21</volume><issue>1</issue><spage>27</spage><epage>35</epage><pages>27-35</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>A new discrimination algorithm, based on the analysis of ventricular electrogram (EGM) onset, was proposed in order to discriminate between supraventricular and ventricular tachycardias (SVTs and VTs) in implantable cardioverter defibrillators (ICDs). Due to the absence of a detailed statistical model for the ventricular activation, this algorithm was based on a support vector method (SVM) learning machine plus bootstrap resampling to avoid overfitting. This SVM classifier was trained with available arrhythmia episodes, so that it can be viewed as containing a statistical model for the differential diagnosis. However, the black-box model character of any learning machine presents problems in a clinical environment. A solution is the extraction of the statistical information enclosed in the black-box model. The SVM could be appropriate for this purpose, given that the support vectors represent the critical samples for the classification task. In this article we propose two SVM-oriented analyses and their use in building two new differential diagnosis algorithms based on the ventricular EGM onset criterion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>11935985</pmid><doi>10.1109/51.993191</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0739-5175 |
ispartof | IEEE engineering in medicine and biology magazine, 2002-01, Vol.21 (1), p.27-35 |
issn | 0739-5175 1937-4186 |
language | eng |
recordid | cdi_ieee_primary_993191 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Backpropagation algorithms Bundle of His - physiopathology Cardiology Covariance matrix Diagnosis, Differential Electrocardiography - methods Electrocardiography - statistics & numerical data Evaluation Studies as Topic Feedback Kernel Machine learning Mathematical model Models, Cardiovascular Models, Statistical Neural Networks (Computer) Pattern Recognition, Automated Sensitivity and Specificity Strontium Studies Support vector machine classification Support vector machines Tachycardia, Supraventricular - diagnosis Tachycardia, Supraventricular - physiopathology Tachycardia, Ventricular - diagnosis Tachycardia, Ventricular - physiopathology |
title | Support vector black-box interpretation in ventricular arrhythmia discrimination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20vector%20black-box%20interpretation%20in%20ventricular%20arrhythmia%20discrimination&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Rojo-Alvarez,%20J.L.&rft.date=2002-01&rft.volume=21&rft.issue=1&rft.spage=27&rft.epage=35&rft.pages=27-35&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.993191&rft_dat=%3Cproquest_RIE%3E28812221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884456774&rft_id=info:pmid/11935985&rft_ieee_id=993191&rfr_iscdi=true |