SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection

Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023, Vol.25, p.1-11
Hauptverfasser: Li, Wuyang, Liu, Xinyu, Yuan, Yixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on multimedia
container_volume 25
creator Li, Wuyang
Liu, Xinyu
Yuan, Yixuan
description Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .
doi_str_mv 10.1109/TMM.2022.3217388
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9931144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931144</ieee_id><sourcerecordid>2887111330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeAx5I6s7v5WG8lrR_Q2kPb87LZTDDFJjHZCv73bknxNDNv3puBH2P3CFNEUE_b1WrKgfOp4JiINL1gI1QSQ4AkufR9xCFUHOGa3fT9HgBlBMmI7TbZ7GMyeQ4W9aepLRXBhg6mdpUNsqYuKlc1tRdnhWmdOQ1B2XTBvDmYqh7U6oeCdb4n64I5OV-86ZZdlearp7tzHbPdy2KbvYXL9et7NluGlkPsQhVZw2WZGJDIi0JQWvgFKZtHQgI3aapiaXkRi5IrLnKlUJaRFDlFcRlTJMbscbjbds33kXqn982xq_1LzdM0QUQhwLtgcNmu6fuOSt121cF0vxpBn-BpD0-f4OkzPB95GCIVEf3blRKIUoo_7eho7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887111330</pqid></control><display><type>article</type><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</creator><creatorcontrib>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</creatorcontrib><description>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3217388</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Adaptation models ; Alignment ; Conditional Kernel ; Domain Adaptive Object Detection ; Kernel ; Kernels ; Knowledge management ; Modules ; Object detection ; Object recognition ; Optimal Transport ; Proposals ; Prototypes ; Reliability ; Semantics ; Unbiased Semantics</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</citedby><cites>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</cites><orcidid>0000-0002-7338-9251 ; 0000-0002-5180-6958 ; 0000-0002-0853-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9931144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Alignment</subject><subject>Conditional Kernel</subject><subject>Domain Adaptive Object Detection</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Knowledge management</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimal Transport</subject><subject>Proposals</subject><subject>Prototypes</subject><subject>Reliability</subject><subject>Semantics</subject><subject>Unbiased Semantics</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeAx5I6s7v5WG8lrR_Q2kPb87LZTDDFJjHZCv73bknxNDNv3puBH2P3CFNEUE_b1WrKgfOp4JiINL1gI1QSQ4AkufR9xCFUHOGa3fT9HgBlBMmI7TbZ7GMyeQ4W9aepLRXBhg6mdpUNsqYuKlc1tRdnhWmdOQ1B2XTBvDmYqh7U6oeCdb4n64I5OV-86ZZdlearp7tzHbPdy2KbvYXL9et7NluGlkPsQhVZw2WZGJDIi0JQWvgFKZtHQgI3aapiaXkRi5IrLnKlUJaRFDlFcRlTJMbscbjbds33kXqn982xq_1LzdM0QUQhwLtgcNmu6fuOSt121cF0vxpBn-BpD0-f4OkzPB95GCIVEf3blRKIUoo_7eho7g</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Wuyang</creator><creator>Liu, Xinyu</creator><creator>Yuan, Yixuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></search><sort><creationdate>2023</creationdate><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><author>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Alignment</topic><topic>Conditional Kernel</topic><topic>Domain Adaptive Object Detection</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Knowledge management</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimal Transport</topic><topic>Proposals</topic><topic>Prototypes</topic><topic>Reliability</topic><topic>Semantics</topic><topic>Unbiased Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wuyang</au><au>Liu, Xinyu</au><au>Yuan, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3217388</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.1-11
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9931144
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Alignment
Conditional Kernel
Domain Adaptive Object Detection
Kernel
Kernels
Knowledge management
Modules
Object detection
Object recognition
Optimal Transport
Proposals
Prototypes
Reliability
Semantics
Unbiased Semantics
title SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCAN++:%20Enhanced%20Semantic%20Conditioned%20Adaptation%20for%20Domain%20Adaptive%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Li,%20Wuyang&rft.date=2023&rft.volume=25&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3217388&rft_dat=%3Cproquest_RIE%3E2887111330%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887111330&rft_id=info:pmid/&rft_ieee_id=9931144&rfr_iscdi=true