SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection
Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Li, Wuyang Liu, Xinyu Yuan, Yixuan |
description | Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ . |
doi_str_mv | 10.1109/TMM.2022.3217388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9931144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931144</ieee_id><sourcerecordid>2887111330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeAx5I6s7v5WG8lrR_Q2kPb87LZTDDFJjHZCv73bknxNDNv3puBH2P3CFNEUE_b1WrKgfOp4JiINL1gI1QSQ4AkufR9xCFUHOGa3fT9HgBlBMmI7TbZ7GMyeQ4W9aepLRXBhg6mdpUNsqYuKlc1tRdnhWmdOQ1B2XTBvDmYqh7U6oeCdb4n64I5OV-86ZZdlearp7tzHbPdy2KbvYXL9et7NluGlkPsQhVZw2WZGJDIi0JQWvgFKZtHQgI3aapiaXkRi5IrLnKlUJaRFDlFcRlTJMbscbjbds33kXqn982xq_1LzdM0QUQhwLtgcNmu6fuOSt121cF0vxpBn-BpD0-f4OkzPB95GCIVEf3blRKIUoo_7eho7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887111330</pqid></control><display><type>article</type><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</creator><creatorcontrib>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</creatorcontrib><description>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3217388</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Adaptation models ; Alignment ; Conditional Kernel ; Domain Adaptive Object Detection ; Kernel ; Kernels ; Knowledge management ; Modules ; Object detection ; Object recognition ; Optimal Transport ; Proposals ; Prototypes ; Reliability ; Semantics ; Unbiased Semantics</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</citedby><cites>FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</cites><orcidid>0000-0002-7338-9251 ; 0000-0002-5180-6958 ; 0000-0002-0853-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9931144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Alignment</subject><subject>Conditional Kernel</subject><subject>Domain Adaptive Object Detection</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Knowledge management</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimal Transport</subject><subject>Proposals</subject><subject>Prototypes</subject><subject>Reliability</subject><subject>Semantics</subject><subject>Unbiased Semantics</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeAx5I6s7v5WG8lrR_Q2kPb87LZTDDFJjHZCv73bknxNDNv3puBH2P3CFNEUE_b1WrKgfOp4JiINL1gI1QSQ4AkufR9xCFUHOGa3fT9HgBlBMmI7TbZ7GMyeQ4W9aepLRXBhg6mdpUNsqYuKlc1tRdnhWmdOQ1B2XTBvDmYqh7U6oeCdb4n64I5OV-86ZZdlearp7tzHbPdy2KbvYXL9et7NluGlkPsQhVZw2WZGJDIi0JQWvgFKZtHQgI3aapiaXkRi5IrLnKlUJaRFDlFcRlTJMbscbjbds33kXqn982xq_1LzdM0QUQhwLtgcNmu6fuOSt121cF0vxpBn-BpD0-f4OkzPB95GCIVEf3blRKIUoo_7eho7g</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Wuyang</creator><creator>Liu, Xinyu</creator><creator>Yuan, Yixuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></search><sort><creationdate>2023</creationdate><title>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</title><author>Li, Wuyang ; Liu, Xinyu ; Yuan, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-95ca24f7a0412dd3e8dc20e9cb53402a88964c2d63f2923b9914f543be56f6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Alignment</topic><topic>Conditional Kernel</topic><topic>Domain Adaptive Object Detection</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Knowledge management</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimal Transport</topic><topic>Proposals</topic><topic>Prototypes</topic><topic>Reliability</topic><topic>Semantics</topic><topic>Unbiased Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wuyang</au><au>Liu, Xinyu</au><au>Yuan, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Domain Adaptive Object Detection (DAOD) transfers an object detector from the labeled source domain to a novel unlabelled target domain. Recent advances bridge the domain gap by aligning category-agnostic feature distribution and minimizing the domain discrepancy for adapting semantic distribution. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level statistics. Moreover, the category-agnostic alignment leads to the disagreement of the cross-domain semantic distribution with inevitable classification errors. To address these two issues, we propose an enhanced Semantic Conditioned AdaptatioN (SCAN++) framework, which leverages unbiased semantics for DAOD. Specifically, in the source domain, we design the conditional kernel to sample Pixel of Interests (PoIs), and aggregate PoIs with a cross-image graph to estimate an unbiased semantic sequence. Conditioned on the semantic sequence, we further update the parameter of the conditional kernel in a semantic conditioned manifestation module, and establish a novel conditional graph in the target domain to model unlabeled semantics. After modeling the semantic distribution in both domains, we integrate the conditional kernel into adversarial alignment to achieve semantic-aware adaptation in a Conditional Kernel guided Alignment (CKA) module. Meanwhile, the Semantic Sequence guided Transport (SST) module is proposed to transfer reliable semantic knowledge to the target domain through solving the cross-domain Optimal Transport (OT) assignment, achieving unbiased adaptation at the semantic level. Comprehensive experiments on four adaptation scenarios demonstrate that SCAN++ achieves state-of-the-art results. The code is available at https://github.com/CityU-AIM-Group/SCAN/tree/SCAN++ .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3217388</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.1-11 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9931144 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Alignment Conditional Kernel Domain Adaptive Object Detection Kernel Kernels Knowledge management Modules Object detection Object recognition Optimal Transport Proposals Prototypes Reliability Semantics Unbiased Semantics |
title | SCAN++: Enhanced Semantic Conditioned Adaptation for Domain Adaptive Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCAN++:%20Enhanced%20Semantic%20Conditioned%20Adaptation%20for%20Domain%20Adaptive%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Li,%20Wuyang&rft.date=2023&rft.volume=25&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3217388&rft_dat=%3Cproquest_RIE%3E2887111330%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887111330&rft_id=info:pmid/&rft_ieee_id=9931144&rfr_iscdi=true |