Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection

A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.113355-113375
Hauptverfasser: Campos, Daniel Filipe, Matos, Anibal, Pinto, Andry Maykol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113375
container_issue
container_start_page 113355
container_title IEEE access
container_volume 10
creator Campos, Daniel Filipe
Matos, Anibal
Pinto, Andry Maykol
description A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leça, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.
doi_str_mv 10.1109/ACCESS.2022.3217504
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9931133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9931133</ieee_id><doaj_id>oai_doaj_org_article_de7c8c5cad87480ea2059b79787467ae</doaj_id><sourcerecordid>2731855571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3bba1c042255b36680aa568e45e4707efa94e10e39bebaecb4cf8527e4136ca33</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaJgqf0FvQQ8p-5ndnMMadVCi4eq12WymWhKmq2bBPHfm5pSnMvMPOa9ebwgmFOyoJQkD2mWrXa7BSOMLTijShJxFUwYjZOISx5f_5tvg1nb7slQeoCkmgTLrSv6Gny47euuipbuAFUTpt_gMUz7zjXu4Po23PW-BIvhO35WtsawdD5cN-0RbVe55i64KaFucXbu0-DtcfWaPUebl6d1lm4iK4juIp7nQC0RjEmZ8zjWBEDGGoVEoYjCEhKBlCBPcswBbS5sqSVTKCiPLXA-DdajbuFgb46-OoD_MQ4q8wc4_2HAdyeDpkBltZUWCq2EJgiMyCRXiRrWWAEOWvej1tG7rx7bzuxd75vBvmGKUy2lVHS44uOV9a5tPZaXr5SYU_pmTN-c0jfn9AfWfGRViHhhJAmnlHP-C0bzf50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731855571</pqid></control><display><type>article</type><title>Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Campos, Daniel Filipe ; Matos, Anibal ; Pinto, Andry Maykol</creator><creatorcontrib>Campos, Daniel Filipe ; Matos, Anibal ; Pinto, Andry Maykol</creatorcontrib><description>A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leça, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3217504</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D perception ; Computer architecture ; Data acquisition ; Datasets ; Domains ; Echo sounding ; Harbors ; heterogeneous sensors ; Inertial navigation ; Inertial platforms ; Inspection ; Kinematics ; Lidar ; Maintenance ; Marine robots ; Marine transportation ; Marine vehicles ; maritime dataset ; Maritime robotics ; multi-domain data ; Multipurpose vehicles ; Navigation ; Navigation systems ; Odometers ; Research facilities ; Robot sensing systems ; Satellite navigation systems ; Sea surface ; Sea vessels ; Sensors ; Situational awareness ; Surface vehicles ; Task analysis ; Three-dimensional displays ; Vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.113355-113375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3bba1c042255b36680aa568e45e4707efa94e10e39bebaecb4cf8527e4136ca33</citedby><cites>FETCH-LOGICAL-c408t-3bba1c042255b36680aa568e45e4707efa94e10e39bebaecb4cf8527e4136ca33</cites><orcidid>0000-0002-3982-1856 ; 0000-0002-9771-002X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9931133$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Campos, Daniel Filipe</creatorcontrib><creatorcontrib>Matos, Anibal</creatorcontrib><creatorcontrib>Pinto, Andry Maykol</creatorcontrib><title>Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection</title><title>IEEE access</title><addtitle>Access</addtitle><description>A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leça, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.</description><subject>3D perception</subject><subject>Computer architecture</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>Domains</subject><subject>Echo sounding</subject><subject>Harbors</subject><subject>heterogeneous sensors</subject><subject>Inertial navigation</subject><subject>Inertial platforms</subject><subject>Inspection</subject><subject>Kinematics</subject><subject>Lidar</subject><subject>Maintenance</subject><subject>Marine robots</subject><subject>Marine transportation</subject><subject>Marine vehicles</subject><subject>maritime dataset</subject><subject>Maritime robotics</subject><subject>multi-domain data</subject><subject>Multipurpose vehicles</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Odometers</subject><subject>Research facilities</subject><subject>Robot sensing systems</subject><subject>Satellite navigation systems</subject><subject>Sea surface</subject><subject>Sea vessels</subject><subject>Sensors</subject><subject>Situational awareness</subject><subject>Surface vehicles</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaJgqf0FvQQ8p-5ndnMMadVCi4eq12WymWhKmq2bBPHfm5pSnMvMPOa9ebwgmFOyoJQkD2mWrXa7BSOMLTijShJxFUwYjZOISx5f_5tvg1nb7slQeoCkmgTLrSv6Gny47euuipbuAFUTpt_gMUz7zjXu4Po23PW-BIvhO35WtsawdD5cN-0RbVe55i64KaFucXbu0-DtcfWaPUebl6d1lm4iK4juIp7nQC0RjEmZ8zjWBEDGGoVEoYjCEhKBlCBPcswBbS5sqSVTKCiPLXA-DdajbuFgb46-OoD_MQ4q8wc4_2HAdyeDpkBltZUWCq2EJgiMyCRXiRrWWAEOWvej1tG7rx7bzuxd75vBvmGKUy2lVHS44uOV9a5tPZaXr5SYU_pmTN-c0jfn9AfWfGRViHhhJAmnlHP-C0bzf50</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Campos, Daniel Filipe</creator><creator>Matos, Anibal</creator><creator>Pinto, Andry Maykol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3982-1856</orcidid><orcidid>https://orcid.org/0000-0002-9771-002X</orcidid></search><sort><creationdate>2022</creationdate><title>Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection</title><author>Campos, Daniel Filipe ; Matos, Anibal ; Pinto, Andry Maykol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3bba1c042255b36680aa568e45e4707efa94e10e39bebaecb4cf8527e4136ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D perception</topic><topic>Computer architecture</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>Domains</topic><topic>Echo sounding</topic><topic>Harbors</topic><topic>heterogeneous sensors</topic><topic>Inertial navigation</topic><topic>Inertial platforms</topic><topic>Inspection</topic><topic>Kinematics</topic><topic>Lidar</topic><topic>Maintenance</topic><topic>Marine robots</topic><topic>Marine transportation</topic><topic>Marine vehicles</topic><topic>maritime dataset</topic><topic>Maritime robotics</topic><topic>multi-domain data</topic><topic>Multipurpose vehicles</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Odometers</topic><topic>Research facilities</topic><topic>Robot sensing systems</topic><topic>Satellite navigation systems</topic><topic>Sea surface</topic><topic>Sea vessels</topic><topic>Sensors</topic><topic>Situational awareness</topic><topic>Surface vehicles</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, Daniel Filipe</creatorcontrib><creatorcontrib>Matos, Anibal</creatorcontrib><creatorcontrib>Pinto, Andry Maykol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, Daniel Filipe</au><au>Matos, Anibal</au><au>Pinto, Andry Maykol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>113355</spage><epage>113375</epage><pages>113355-113375</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leça, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3217504</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3982-1856</orcidid><orcidid>https://orcid.org/0000-0002-9771-002X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.113355-113375
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9931133
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3D perception
Computer architecture
Data acquisition
Datasets
Domains
Echo sounding
Harbors
heterogeneous sensors
Inertial navigation
Inertial platforms
Inspection
Kinematics
Lidar
Maintenance
Marine robots
Marine transportation
Marine vehicles
maritime dataset
Maritime robotics
multi-domain data
Multipurpose vehicles
Navigation
Navigation systems
Odometers
Research facilities
Robot sensing systems
Satellite navigation systems
Sea surface
Sea vessels
Sensors
Situational awareness
Surface vehicles
Task analysis
Three-dimensional displays
Vehicles
title Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Multi-Domain%20Aware%20Autonomous%20Surface%20Vehicle%20for%20Inspection&rft.jtitle=IEEE%20access&rft.au=Campos,%20Daniel%20Filipe&rft.date=2022&rft.volume=10&rft.spage=113355&rft.epage=113375&rft.pages=113355-113375&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3217504&rft_dat=%3Cproquest_ieee_%3E2731855571%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731855571&rft_id=info:pmid/&rft_ieee_id=9931133&rft_doaj_id=oai_doaj_org_article_de7c8c5cad87480ea2059b79787467ae&rfr_iscdi=true