Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders
Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling app...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2023-02, Vol.36 (1), p.147-150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | IEEE transactions on semiconductor manufacturing |
container_volume | 36 |
creator | Gorman, Mark Ding, Xuemei Maguire, Liam Coyle, Damien |
description | Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams. |
doi_str_mv | 10.1109/TSM.2022.3216032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9925612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9925612</ieee_id><sourcerecordid>2773453983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kc3HsfZDhRZF6zlsJ7Oakmbr7kao-ONNSfE0vMzzDsNDyDVnI85Zfrd6W44EE2IkBU-YFCdkwJXKIiFjdUoGLMvjKFEsPScX3m8Y43GcpwPyO27sVtd7OsWAECrb0Kqh9zrAJ13qpjUaQuuq5oO-OAvoPXr67g95YUHX1Q-W9BXBNj64tu_PnLPO07mzW8qjKZ3Y5tvW7WGnazpug501YEt0_pKcGV17vDrOIVnNZ6vJY7R4fniajBcRSClDZNYG1ig4SyBWqE2eAZQmLjUk6yQVGWSQxNwIlumUAwqlJCjkBjJd6rKUQ3Lbn905-9WiD8XGtq57xhciTTs_Ms9kR7GeAme9d2iKnau22u0LzoqD4qJTXBwUF0fFXeWmr1SI-I_nuVAJF_IPDM566w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773453983</pqid></control><display><type>article</type><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><source>IEEE Xplore</source><creator>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</creator><creatorcontrib>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</creatorcontrib><description>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3216032</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; convolutional autoencoder ; Deep learning ; Errors ; fault detection and classification ; Feature extraction ; Machine learning ; Manufacturing ; Metals ; Multivariate analysis ; Reconstruction ; reconstruction error ; Semiconductor device modeling ; semiconductor manufacturing ; Sensors ; Shape ; Training ; Unsupervised learning</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2023-02, Vol.36 (1), p.147-150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</citedby><cites>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</cites><orcidid>0000-0003-2965-3358 ; 0000-0002-8644-4256 ; 0000-0002-4739-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9925612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9925612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorman, Mark</creatorcontrib><creatorcontrib>Ding, Xuemei</creatorcontrib><creatorcontrib>Maguire, Liam</creatorcontrib><creatorcontrib>Coyle, Damien</creatorcontrib><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</description><subject>Anomalies</subject><subject>convolutional autoencoder</subject><subject>Deep learning</subject><subject>Errors</subject><subject>fault detection and classification</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Metals</subject><subject>Multivariate analysis</subject><subject>Reconstruction</subject><subject>reconstruction error</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>Sensors</subject><subject>Shape</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kc3HsfZDhRZF6zlsJ7Oakmbr7kao-ONNSfE0vMzzDsNDyDVnI85Zfrd6W44EE2IkBU-YFCdkwJXKIiFjdUoGLMvjKFEsPScX3m8Y43GcpwPyO27sVtd7OsWAECrb0Kqh9zrAJ13qpjUaQuuq5oO-OAvoPXr67g95YUHX1Q-W9BXBNj64tu_PnLPO07mzW8qjKZ3Y5tvW7WGnazpug501YEt0_pKcGV17vDrOIVnNZ6vJY7R4fniajBcRSClDZNYG1ig4SyBWqE2eAZQmLjUk6yQVGWSQxNwIlumUAwqlJCjkBjJd6rKUQ3Lbn905-9WiD8XGtq57xhciTTs_Ms9kR7GeAme9d2iKnau22u0LzoqD4qJTXBwUF0fFXeWmr1SI-I_nuVAJF_IPDM566w</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gorman, Mark</creator><creator>Ding, Xuemei</creator><creator>Maguire, Liam</creator><creator>Coyle, Damien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2965-3358</orcidid><orcidid>https://orcid.org/0000-0002-8644-4256</orcidid><orcidid>https://orcid.org/0000-0002-4739-1040</orcidid></search><sort><creationdate>20230201</creationdate><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><author>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>convolutional autoencoder</topic><topic>Deep learning</topic><topic>Errors</topic><topic>fault detection and classification</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Metals</topic><topic>Multivariate analysis</topic><topic>Reconstruction</topic><topic>reconstruction error</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>Sensors</topic><topic>Shape</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman, Mark</creatorcontrib><creatorcontrib>Ding, Xuemei</creatorcontrib><creatorcontrib>Maguire, Liam</creatorcontrib><creatorcontrib>Coyle, Damien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorman, Mark</au><au>Ding, Xuemei</au><au>Maguire, Liam</au><au>Coyle, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>147</spage><epage>150</epage><pages>147-150</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3216032</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2965-3358</orcidid><orcidid>https://orcid.org/0000-0002-8644-4256</orcidid><orcidid>https://orcid.org/0000-0002-4739-1040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0894-6507 |
ispartof | IEEE transactions on semiconductor manufacturing, 2023-02, Vol.36 (1), p.147-150 |
issn | 0894-6507 1558-2345 |
language | eng |
recordid | cdi_ieee_primary_9925612 |
source | IEEE Xplore |
subjects | Anomalies convolutional autoencoder Deep learning Errors fault detection and classification Feature extraction Machine learning Manufacturing Metals Multivariate analysis Reconstruction reconstruction error Semiconductor device modeling semiconductor manufacturing Sensors Shape Training Unsupervised learning |
title | Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20in%20Batch%20Manufacturing%20Processes%20Using%20Localized%20Reconstruction%20Errors%20From%201-D%20Convolutional%20AutoEncoders&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Gorman,%20Mark&rft.date=2023-02-01&rft.volume=36&rft.issue=1&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3216032&rft_dat=%3Cproquest_RIE%3E2773453983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773453983&rft_id=info:pmid/&rft_ieee_id=9925612&rfr_iscdi=true |