Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders

Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2023-02, Vol.36 (1), p.147-150
Hauptverfasser: Gorman, Mark, Ding, Xuemei, Maguire, Liam, Coyle, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 147
container_title IEEE transactions on semiconductor manufacturing
container_volume 36
creator Gorman, Mark
Ding, Xuemei
Maguire, Liam
Coyle, Damien
description Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.
doi_str_mv 10.1109/TSM.2022.3216032
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9925612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9925612</ieee_id><sourcerecordid>2773453983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kc3HsfZDhRZF6zlsJ7Oakmbr7kao-ONNSfE0vMzzDsNDyDVnI85Zfrd6W44EE2IkBU-YFCdkwJXKIiFjdUoGLMvjKFEsPScX3m8Y43GcpwPyO27sVtd7OsWAECrb0Kqh9zrAJ13qpjUaQuuq5oO-OAvoPXr67g95YUHX1Q-W9BXBNj64tu_PnLPO07mzW8qjKZ3Y5tvW7WGnazpug501YEt0_pKcGV17vDrOIVnNZ6vJY7R4fniajBcRSClDZNYG1ig4SyBWqE2eAZQmLjUk6yQVGWSQxNwIlumUAwqlJCjkBjJd6rKUQ3Lbn905-9WiD8XGtq57xhciTTs_Ms9kR7GeAme9d2iKnau22u0LzoqD4qJTXBwUF0fFXeWmr1SI-I_nuVAJF_IPDM566w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773453983</pqid></control><display><type>article</type><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><source>IEEE Xplore</source><creator>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</creator><creatorcontrib>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</creatorcontrib><description>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3216032</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; convolutional autoencoder ; Deep learning ; Errors ; fault detection and classification ; Feature extraction ; Machine learning ; Manufacturing ; Metals ; Multivariate analysis ; Reconstruction ; reconstruction error ; Semiconductor device modeling ; semiconductor manufacturing ; Sensors ; Shape ; Training ; Unsupervised learning</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2023-02, Vol.36 (1), p.147-150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</citedby><cites>FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</cites><orcidid>0000-0003-2965-3358 ; 0000-0002-8644-4256 ; 0000-0002-4739-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9925612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9925612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorman, Mark</creatorcontrib><creatorcontrib>Ding, Xuemei</creatorcontrib><creatorcontrib>Maguire, Liam</creatorcontrib><creatorcontrib>Coyle, Damien</creatorcontrib><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</description><subject>Anomalies</subject><subject>convolutional autoencoder</subject><subject>Deep learning</subject><subject>Errors</subject><subject>fault detection and classification</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Metals</subject><subject>Multivariate analysis</subject><subject>Reconstruction</subject><subject>reconstruction error</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>Sensors</subject><subject>Shape</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kc3HsfZDhRZF6zlsJ7Oakmbr7kao-ONNSfE0vMzzDsNDyDVnI85Zfrd6W44EE2IkBU-YFCdkwJXKIiFjdUoGLMvjKFEsPScX3m8Y43GcpwPyO27sVtd7OsWAECrb0Kqh9zrAJ13qpjUaQuuq5oO-OAvoPXr67g95YUHX1Q-W9BXBNj64tu_PnLPO07mzW8qjKZ3Y5tvW7WGnazpug501YEt0_pKcGV17vDrOIVnNZ6vJY7R4fniajBcRSClDZNYG1ig4SyBWqE2eAZQmLjUk6yQVGWSQxNwIlumUAwqlJCjkBjJd6rKUQ3Lbn905-9WiD8XGtq57xhciTTs_Ms9kR7GeAme9d2iKnau22u0LzoqD4qJTXBwUF0fFXeWmr1SI-I_nuVAJF_IPDM566w</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gorman, Mark</creator><creator>Ding, Xuemei</creator><creator>Maguire, Liam</creator><creator>Coyle, Damien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2965-3358</orcidid><orcidid>https://orcid.org/0000-0002-8644-4256</orcidid><orcidid>https://orcid.org/0000-0002-4739-1040</orcidid></search><sort><creationdate>20230201</creationdate><title>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</title><author>Gorman, Mark ; Ding, Xuemei ; Maguire, Liam ; Coyle, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fbfcbe2106c45eaf98ccdf4dac6b6728c8c641f208a71ce2553c5e1fc8adadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>convolutional autoencoder</topic><topic>Deep learning</topic><topic>Errors</topic><topic>fault detection and classification</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Metals</topic><topic>Multivariate analysis</topic><topic>Reconstruction</topic><topic>reconstruction error</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>Sensors</topic><topic>Shape</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman, Mark</creatorcontrib><creatorcontrib>Ding, Xuemei</creatorcontrib><creatorcontrib>Maguire, Liam</creatorcontrib><creatorcontrib>Coyle, Damien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorman, Mark</au><au>Ding, Xuemei</au><au>Maguire, Liam</au><au>Coyle, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>147</spage><epage>150</epage><pages>147-150</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3216032</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2965-3358</orcidid><orcidid>https://orcid.org/0000-0002-8644-4256</orcidid><orcidid>https://orcid.org/0000-0002-4739-1040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2023-02, Vol.36 (1), p.147-150
issn 0894-6507
1558-2345
language eng
recordid cdi_ieee_primary_9925612
source IEEE Xplore
subjects Anomalies
convolutional autoencoder
Deep learning
Errors
fault detection and classification
Feature extraction
Machine learning
Manufacturing
Metals
Multivariate analysis
Reconstruction
reconstruction error
Semiconductor device modeling
semiconductor manufacturing
Sensors
Shape
Training
Unsupervised learning
title Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20in%20Batch%20Manufacturing%20Processes%20Using%20Localized%20Reconstruction%20Errors%20From%201-D%20Convolutional%20AutoEncoders&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Gorman,%20Mark&rft.date=2023-02-01&rft.volume=36&rft.issue=1&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3216032&rft_dat=%3Cproquest_RIE%3E2773453983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773453983&rft_id=info:pmid/&rft_ieee_id=9925612&rfr_iscdi=true