Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs
A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-09, Vol.70 (9), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Tong, Chengde Lang, Jiewen Bai, Jingang Zheng, Ping Ma, Dongyu |
description | A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench. |
doi_str_mv | 10.1109/TIE.2022.3213888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9923581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923581</ieee_id><sourcerecordid>2795806609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouH7cBS8Bz1knSdMmR91dP0BRdPVa0nSqldqsSYp68q9bXfE0A_O8M8xDyAGHKedgjpeXi6kAIaZScKm13iATrlTBjMn0JpmAKDQDyPJtshPjCwDPFFcT8jVHW1doE5u3AV2iSx_eBqS2r-lZN3zQme9T8B31DbX0NAzxucMY6clHazv2S1zbpx5T69g52oA1nfuh6pDd-eTDOHTPbY-0Gftb_46B3a-6NqW2f6IXi8e4R7Ya20Xc_6u75OFssZxdsKub88vZyRVzwvDEZNNkyslM2SY3rgChKm4gt5l2eV1wLTATVQUuz43RhQNZW-CuMs5hBdIquUuO1ntXwY__xVS--CH048lSFEZpyHMwIwVrygUfY8CmXIX21YbPkkP5o7kcNZc_mss_zWPkcB1pEfEfN0ZIpbn8BjR6eOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795806609</pqid></control><display><type>article</type><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</creator><creatorcontrib>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</creatorcontrib><description>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3213888</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axial stress ; axial-flux magnetic-geared double-rotor machine (AMGDRM) ; Couplings ; current and flux linkage observers ; Deadbeat-direct torque and flux control (DB-DTFC) ; Decoupling ; Hybrid electric vehicles ; hybrid electric vehicles (HEVs) ; Hybrid systems ; Internal combustion engines ; Magnetic flux ; Observers ; Powertrain ; Proportional integral ; Prototype tests ; Robust control ; Rotors ; Speed control ; Splitting ; Stators ; Torque ; Traction ; Velocity control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</citedby><cites>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</cites><orcidid>0000-0002-9350-8086 ; 0000-0002-6162-3733 ; 0000-0003-2780-9005 ; 0000-0002-5710-1043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Chengde</creatorcontrib><creatorcontrib>Lang, Jiewen</creatorcontrib><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Ma, Dongyu</creatorcontrib><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</description><subject>Axial stress</subject><subject>axial-flux magnetic-geared double-rotor machine (AMGDRM)</subject><subject>Couplings</subject><subject>current and flux linkage observers</subject><subject>Deadbeat-direct torque and flux control (DB-DTFC)</subject><subject>Decoupling</subject><subject>Hybrid electric vehicles</subject><subject>hybrid electric vehicles (HEVs)</subject><subject>Hybrid systems</subject><subject>Internal combustion engines</subject><subject>Magnetic flux</subject><subject>Observers</subject><subject>Powertrain</subject><subject>Proportional integral</subject><subject>Prototype tests</subject><subject>Robust control</subject><subject>Rotors</subject><subject>Speed control</subject><subject>Splitting</subject><subject>Stators</subject><subject>Torque</subject><subject>Traction</subject><subject>Velocity control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouH7cBS8Bz1knSdMmR91dP0BRdPVa0nSqldqsSYp68q9bXfE0A_O8M8xDyAGHKedgjpeXi6kAIaZScKm13iATrlTBjMn0JpmAKDQDyPJtshPjCwDPFFcT8jVHW1doE5u3AV2iSx_eBqS2r-lZN3zQme9T8B31DbX0NAzxucMY6clHazv2S1zbpx5T69g52oA1nfuh6pDd-eTDOHTPbY-0Gftb_46B3a-6NqW2f6IXi8e4R7Ya20Xc_6u75OFssZxdsKub88vZyRVzwvDEZNNkyslM2SY3rgChKm4gt5l2eV1wLTATVQUuz43RhQNZW-CuMs5hBdIquUuO1ntXwY__xVS--CH048lSFEZpyHMwIwVrygUfY8CmXIX21YbPkkP5o7kcNZc_mss_zWPkcB1pEfEfN0ZIpbn8BjR6eOM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Tong, Chengde</creator><creator>Lang, Jiewen</creator><creator>Bai, Jingang</creator><creator>Zheng, Ping</creator><creator>Ma, Dongyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-5710-1043</orcidid></search><sort><creationdate>20230901</creationdate><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><author>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial stress</topic><topic>axial-flux magnetic-geared double-rotor machine (AMGDRM)</topic><topic>Couplings</topic><topic>current and flux linkage observers</topic><topic>Deadbeat-direct torque and flux control (DB-DTFC)</topic><topic>Decoupling</topic><topic>Hybrid electric vehicles</topic><topic>hybrid electric vehicles (HEVs)</topic><topic>Hybrid systems</topic><topic>Internal combustion engines</topic><topic>Magnetic flux</topic><topic>Observers</topic><topic>Powertrain</topic><topic>Proportional integral</topic><topic>Prototype tests</topic><topic>Robust control</topic><topic>Rotors</topic><topic>Speed control</topic><topic>Splitting</topic><topic>Stators</topic><topic>Torque</topic><topic>Traction</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Chengde</creatorcontrib><creatorcontrib>Lang, Jiewen</creatorcontrib><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Ma, Dongyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Chengde</au><au>Lang, Jiewen</au><au>Bai, Jingang</au><au>Zheng, Ping</au><au>Ma, Dongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>70</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3213888</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-5710-1043</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9923581 |
source | IEEE Electronic Library (IEL) |
subjects | Axial stress axial-flux magnetic-geared double-rotor machine (AMGDRM) Couplings current and flux linkage observers Deadbeat-direct torque and flux control (DB-DTFC) Decoupling Hybrid electric vehicles hybrid electric vehicles (HEVs) Hybrid systems Internal combustion engines Magnetic flux Observers Powertrain Proportional integral Prototype tests Robust control Rotors Speed control Splitting Stators Torque Traction Velocity control |
title | Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deadbeat-Direct%20Torque%20and%20Flux%20Control%20of%20a%20Brushless%20Axial-Flux%20Magnetic-Geared%20Double-Rotor%20Machine%20for%20Power-Splitting%20HEVs&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tong,%20Chengde&rft.date=2023-09-01&rft.volume=70&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3213888&rft_dat=%3Cproquest_RIE%3E2795806609%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795806609&rft_id=info:pmid/&rft_ieee_id=9923581&rfr_iscdi=true |