Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs

A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2023-09, Vol.70 (9), p.1-10
Hauptverfasser: Tong, Chengde, Lang, Jiewen, Bai, Jingang, Zheng, Ping, Ma, Dongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume 70
creator Tong, Chengde
Lang, Jiewen
Bai, Jingang
Zheng, Ping
Ma, Dongyu
description A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.
doi_str_mv 10.1109/TIE.2022.3213888
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9923581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923581</ieee_id><sourcerecordid>2795806609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouH7cBS8Bz1knSdMmR91dP0BRdPVa0nSqldqsSYp68q9bXfE0A_O8M8xDyAGHKedgjpeXi6kAIaZScKm13iATrlTBjMn0JpmAKDQDyPJtshPjCwDPFFcT8jVHW1doE5u3AV2iSx_eBqS2r-lZN3zQme9T8B31DbX0NAzxucMY6clHazv2S1zbpx5T69g52oA1nfuh6pDd-eTDOHTPbY-0Gftb_46B3a-6NqW2f6IXi8e4R7Ya20Xc_6u75OFssZxdsKub88vZyRVzwvDEZNNkyslM2SY3rgChKm4gt5l2eV1wLTATVQUuz43RhQNZW-CuMs5hBdIquUuO1ntXwY__xVS--CH048lSFEZpyHMwIwVrygUfY8CmXIX21YbPkkP5o7kcNZc_mss_zWPkcB1pEfEfN0ZIpbn8BjR6eOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795806609</pqid></control><display><type>article</type><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</creator><creatorcontrib>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</creatorcontrib><description>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3213888</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axial stress ; axial-flux magnetic-geared double-rotor machine (AMGDRM) ; Couplings ; current and flux linkage observers ; Deadbeat-direct torque and flux control (DB-DTFC) ; Decoupling ; Hybrid electric vehicles ; hybrid electric vehicles (HEVs) ; Hybrid systems ; Internal combustion engines ; Magnetic flux ; Observers ; Powertrain ; Proportional integral ; Prototype tests ; Robust control ; Rotors ; Speed control ; Splitting ; Stators ; Torque ; Traction ; Velocity control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</citedby><cites>FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</cites><orcidid>0000-0002-9350-8086 ; 0000-0002-6162-3733 ; 0000-0003-2780-9005 ; 0000-0002-5710-1043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Chengde</creatorcontrib><creatorcontrib>Lang, Jiewen</creatorcontrib><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Ma, Dongyu</creatorcontrib><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</description><subject>Axial stress</subject><subject>axial-flux magnetic-geared double-rotor machine (AMGDRM)</subject><subject>Couplings</subject><subject>current and flux linkage observers</subject><subject>Deadbeat-direct torque and flux control (DB-DTFC)</subject><subject>Decoupling</subject><subject>Hybrid electric vehicles</subject><subject>hybrid electric vehicles (HEVs)</subject><subject>Hybrid systems</subject><subject>Internal combustion engines</subject><subject>Magnetic flux</subject><subject>Observers</subject><subject>Powertrain</subject><subject>Proportional integral</subject><subject>Prototype tests</subject><subject>Robust control</subject><subject>Rotors</subject><subject>Speed control</subject><subject>Splitting</subject><subject>Stators</subject><subject>Torque</subject><subject>Traction</subject><subject>Velocity control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMouH7cBS8Bz1knSdMmR91dP0BRdPVa0nSqldqsSYp68q9bXfE0A_O8M8xDyAGHKedgjpeXi6kAIaZScKm13iATrlTBjMn0JpmAKDQDyPJtshPjCwDPFFcT8jVHW1doE5u3AV2iSx_eBqS2r-lZN3zQme9T8B31DbX0NAzxucMY6clHazv2S1zbpx5T69g52oA1nfuh6pDd-eTDOHTPbY-0Gftb_46B3a-6NqW2f6IXi8e4R7Ya20Xc_6u75OFssZxdsKub88vZyRVzwvDEZNNkyslM2SY3rgChKm4gt5l2eV1wLTATVQUuz43RhQNZW-CuMs5hBdIquUuO1ntXwY__xVS--CH048lSFEZpyHMwIwVrygUfY8CmXIX21YbPkkP5o7kcNZc_mss_zWPkcB1pEfEfN0ZIpbn8BjR6eOM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Tong, Chengde</creator><creator>Lang, Jiewen</creator><creator>Bai, Jingang</creator><creator>Zheng, Ping</creator><creator>Ma, Dongyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-5710-1043</orcidid></search><sort><creationdate>20230901</creationdate><title>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</title><author>Tong, Chengde ; Lang, Jiewen ; Bai, Jingang ; Zheng, Ping ; Ma, Dongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3ff45c345af69c7025b1906a48c6d7182e42bb0c669987c03da01cb9cceb03a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial stress</topic><topic>axial-flux magnetic-geared double-rotor machine (AMGDRM)</topic><topic>Couplings</topic><topic>current and flux linkage observers</topic><topic>Deadbeat-direct torque and flux control (DB-DTFC)</topic><topic>Decoupling</topic><topic>Hybrid electric vehicles</topic><topic>hybrid electric vehicles (HEVs)</topic><topic>Hybrid systems</topic><topic>Internal combustion engines</topic><topic>Magnetic flux</topic><topic>Observers</topic><topic>Powertrain</topic><topic>Proportional integral</topic><topic>Prototype tests</topic><topic>Robust control</topic><topic>Rotors</topic><topic>Speed control</topic><topic>Splitting</topic><topic>Stators</topic><topic>Torque</topic><topic>Traction</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Chengde</creatorcontrib><creatorcontrib>Lang, Jiewen</creatorcontrib><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Ma, Dongyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Chengde</au><au>Lang, Jiewen</au><au>Bai, Jingang</au><au>Zheng, Ping</au><au>Ma, Dongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>70</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A deadbeat-direct torque and flux control (DB-DTFC) for brushless axial-flux magnetic-geared double-rotor machines (AMGDRMs) is presented in this paper. The AMGDRM is employed as a power-splitting component in hybrid electric vehicles (HEVs) to enable speed decoupling between the internal combustion engine (ICE) and load. Since the rigid connection between the ICE and the drive train is replaced by the AMGDRM, fast torque control of the AMGDRM is required for the ICE speed regulation. Furthermore, the ICE torque contains abundant harmonics, inevitable sinusoidal components are introduced to the modulating rotor torque for torque balance, and further to the PM rotor torque owing to the magnetic-gear effect. Since both the PM rotor of the AMGDRM and the traction motor contribute to the hybrid electric system total torque output (i.e., torque coupling), the cascaded traction motor should compensate the PM rotor torque ripple actively to guarantee smooth total output torque. However, proportional-integral (PI) regulator suffers from limited bandwidth and thus could not realize accurate torque decoupling. Therefore, DB-DTFC, where torque and flux linkage are decoupled and respectively achieve their reference commands within two sampling periods, i.e., deadbeat responses, is proposed to enable a faster and more robust ICE speed control and accurate torque decoupling. The DB-DTFC law is derived and discrete-time close-loop current and flux linkage observers of the AMGDRM are developed. The proposed scheme and its superiorities are experimentally validated on an AMGDRM prototype test bench.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3213888</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-5710-1043</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_9923581
source IEEE Electronic Library (IEL)
subjects Axial stress
axial-flux magnetic-geared double-rotor machine (AMGDRM)
Couplings
current and flux linkage observers
Deadbeat-direct torque and flux control (DB-DTFC)
Decoupling
Hybrid electric vehicles
hybrid electric vehicles (HEVs)
Hybrid systems
Internal combustion engines
Magnetic flux
Observers
Powertrain
Proportional integral
Prototype tests
Robust control
Rotors
Speed control
Splitting
Stators
Torque
Traction
Velocity control
title Deadbeat-Direct Torque and Flux Control of a Brushless Axial-Flux Magnetic-Geared Double-Rotor Machine for Power-Splitting HEVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deadbeat-Direct%20Torque%20and%20Flux%20Control%20of%20a%20Brushless%20Axial-Flux%20Magnetic-Geared%20Double-Rotor%20Machine%20for%20Power-Splitting%20HEVs&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tong,%20Chengde&rft.date=2023-09-01&rft.volume=70&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3213888&rft_dat=%3Cproquest_RIE%3E2795806609%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795806609&rft_id=info:pmid/&rft_ieee_id=9923581&rfr_iscdi=true