Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser

This work develops a new class of Hammerstein adaptive filters that contains a memory-less non-linear system followed by a linear adaptive filter, where the non-linear system comprises an adjustable look-up table (LUT) and a spline interpolator. This paper's first effort has been to employ the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022, p.1-10
Hauptverfasser: Janjanam, Lakshminarayana, Saha, Suman Kumar, Kar, Rajib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume
creator Janjanam, Lakshminarayana
Saha, Suman Kumar
Kar, Rajib
description This work develops a new class of Hammerstein adaptive filters that contains a memory-less non-linear system followed by a linear adaptive filter, where the non-linear system comprises an adjustable look-up table (LUT) and a spline interpolator. This paper's first effort has been to employ the meta-heuristic algorithm (MHA) to the Hammerstein spline adaptive filter (HSAF), where it concurrently updates the weights of spline control points and linear filter based on the estimation problem. A novel MHA called snake optimiser algorithm (SOA) is used to enhance the assurance of convergence, estimated parameter accuracy and steady-state results. The presented experimental results indorse that the proposed SOA-based HSAF (SOA-HSAF) design exhibits more robust performance in dealing with higher degree non-linear systems under the Gaussian and Non-Gaussian circumstances compared to contemporary design methods like classical, some standard MHAs and other researchers reported techniques. The achieved simulation results are validated using a TMS320C6713 digital signal processor.
doi_str_mv 10.1109/TIE.2022.3213886
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9923579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923579</ieee_id><sourcerecordid>9923579</sourcerecordid><originalsourceid>FETCH-ieee_primary_99235793</originalsourceid><addsrcrecordid>eNp9jjsPgjAUhTto4nM3cbl_AGwLKKw-iCY-BthJ1Yuplpa0OPDvJcbZ6STf-ZJzCJkx6jNGk0V-2Pmccu4HnAVxvOyRIeWr2KM0XA7IyLknpSyMWDQkz0vdyEoo2KKTDw2mhL2oKrSuQalh877KG2S1khohlapBC6WxcDbaO3ZMWMjaTq3gZO6oOu0Ba-HwDkZDpsUL4TsgHdoJ6ZdCOZz-ckzm6S7f7D2JiEVtuxu2LZKEB9EqCf63H9_IRmE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser</title><source>IEEE Electronic Library (IEL)</source><creator>Janjanam, Lakshminarayana ; Saha, Suman Kumar ; Kar, Rajib</creator><creatorcontrib>Janjanam, Lakshminarayana ; Saha, Suman Kumar ; Kar, Rajib</creatorcontrib><description>This work develops a new class of Hammerstein adaptive filters that contains a memory-less non-linear system followed by a linear adaptive filter, where the non-linear system comprises an adjustable look-up table (LUT) and a spline interpolator. This paper's first effort has been to employ the meta-heuristic algorithm (MHA) to the Hammerstein spline adaptive filter (HSAF), where it concurrently updates the weights of spline control points and linear filter based on the estimation problem. A novel MHA called snake optimiser algorithm (SOA) is used to enhance the assurance of convergence, estimated parameter accuracy and steady-state results. The presented experimental results indorse that the proposed SOA-based HSAF (SOA-HSAF) design exhibits more robust performance in dealing with higher degree non-linear systems under the Gaussian and Non-Gaussian circumstances compared to contemporary design methods like classical, some standard MHAs and other researchers reported techniques. The achieved simulation results are validated using a TMS320C6713 digital signal processor.</description><identifier>ISSN: 0278-0046</identifier><identifier>DOI: 10.1109/TIE.2022.3213886</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Computational modeling ; Convergence ; Digital signal processor ; Finite impulse response filters ; Hammerstein spline adaptive filter ; Maximum likelihood detection ; Non-linear systems ; Nonlinear filters ; Snake optimiser algorithm ; Splines (mathematics) ; System identification</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5340-4058 ; 0000-0002-5789-0580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923579$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Janjanam, Lakshminarayana</creatorcontrib><creatorcontrib>Saha, Suman Kumar</creatorcontrib><creatorcontrib>Kar, Rajib</creatorcontrib><title>Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This work develops a new class of Hammerstein adaptive filters that contains a memory-less non-linear system followed by a linear adaptive filter, where the non-linear system comprises an adjustable look-up table (LUT) and a spline interpolator. This paper's first effort has been to employ the meta-heuristic algorithm (MHA) to the Hammerstein spline adaptive filter (HSAF), where it concurrently updates the weights of spline control points and linear filter based on the estimation problem. A novel MHA called snake optimiser algorithm (SOA) is used to enhance the assurance of convergence, estimated parameter accuracy and steady-state results. The presented experimental results indorse that the proposed SOA-based HSAF (SOA-HSAF) design exhibits more robust performance in dealing with higher degree non-linear systems under the Gaussian and Non-Gaussian circumstances compared to contemporary design methods like classical, some standard MHAs and other researchers reported techniques. The achieved simulation results are validated using a TMS320C6713 digital signal processor.</description><subject>Adaptive filters</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Digital signal processor</subject><subject>Finite impulse response filters</subject><subject>Hammerstein spline adaptive filter</subject><subject>Maximum likelihood detection</subject><subject>Non-linear systems</subject><subject>Nonlinear filters</subject><subject>Snake optimiser algorithm</subject><subject>Splines (mathematics)</subject><subject>System identification</subject><issn>0278-0046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9jjsPgjAUhTto4nM3cbl_AGwLKKw-iCY-BthJ1Yuplpa0OPDvJcbZ6STf-ZJzCJkx6jNGk0V-2Pmccu4HnAVxvOyRIeWr2KM0XA7IyLknpSyMWDQkz0vdyEoo2KKTDw2mhL2oKrSuQalh877KG2S1khohlapBC6WxcDbaO3ZMWMjaTq3gZO6oOu0Ba-HwDkZDpsUL4TsgHdoJ6ZdCOZz-ckzm6S7f7D2JiEVtuxu2LZKEB9EqCf63H9_IRmE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Janjanam, Lakshminarayana</creator><creator>Saha, Suman Kumar</creator><creator>Kar, Rajib</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-5340-4058</orcidid><orcidid>https://orcid.org/0000-0002-5789-0580</orcidid></search><sort><creationdate>2022</creationdate><title>Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser</title><author>Janjanam, Lakshminarayana ; Saha, Suman Kumar ; Kar, Rajib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_99235793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive filters</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Digital signal processor</topic><topic>Finite impulse response filters</topic><topic>Hammerstein spline adaptive filter</topic><topic>Maximum likelihood detection</topic><topic>Non-linear systems</topic><topic>Nonlinear filters</topic><topic>Snake optimiser algorithm</topic><topic>Splines (mathematics)</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janjanam, Lakshminarayana</creatorcontrib><creatorcontrib>Saha, Suman Kumar</creatorcontrib><creatorcontrib>Kar, Rajib</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janjanam, Lakshminarayana</au><au>Saha, Suman Kumar</au><au>Kar, Rajib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022</date><risdate>2022</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0278-0046</issn><coden>ITIED6</coden><abstract>This work develops a new class of Hammerstein adaptive filters that contains a memory-less non-linear system followed by a linear adaptive filter, where the non-linear system comprises an adjustable look-up table (LUT) and a spline interpolator. This paper's first effort has been to employ the meta-heuristic algorithm (MHA) to the Hammerstein spline adaptive filter (HSAF), where it concurrently updates the weights of spline control points and linear filter based on the estimation problem. A novel MHA called snake optimiser algorithm (SOA) is used to enhance the assurance of convergence, estimated parameter accuracy and steady-state results. The presented experimental results indorse that the proposed SOA-based HSAF (SOA-HSAF) design exhibits more robust performance in dealing with higher degree non-linear systems under the Gaussian and Non-Gaussian circumstances compared to contemporary design methods like classical, some standard MHAs and other researchers reported techniques. The achieved simulation results are validated using a TMS320C6713 digital signal processor.</abstract><pub>IEEE</pub><doi>10.1109/TIE.2022.3213886</doi><orcidid>https://orcid.org/0000-0001-5340-4058</orcidid><orcidid>https://orcid.org/0000-0002-5789-0580</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2022, p.1-10
issn 0278-0046
language eng
recordid cdi_ieee_primary_9923579
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Computational modeling
Convergence
Digital signal processor
Finite impulse response filters
Hammerstein spline adaptive filter
Maximum likelihood detection
Non-linear systems
Nonlinear filters
Snake optimiser algorithm
Splines (mathematics)
System identification
title Optimal Design of Hammerstein Cubic Spline Filter for Non-Linear System Modelling Based on Snake Optimiser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20of%20Hammerstein%20Cubic%20Spline%20Filter%20for%20Non-Linear%20System%20Modelling%20Based%20on%20Snake%20Optimiser&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Janjanam,%20Lakshminarayana&rft.date=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0278-0046&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3213886&rft_dat=%3Cieee_RIE%3E9923579%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9923579&rfr_iscdi=true