Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment

In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-04, Vol.54 (4), p.2015-2025
Hauptverfasser: Liu, Xing, Liu, Zhengxiong, Huang, Panfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2025
container_issue 4
container_start_page 2015
container_title IEEE transactions on cybernetics
container_volume 54
creator Liu, Xing
Liu, Zhengxiong
Huang, Panfeng
description In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks.
doi_str_mv 10.1109/TCYB.2022.3211440
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9923577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9923577</ieee_id><sourcerecordid>2969041334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxYO0qFg_gAgl4EtfZps_M5nJoy5bFVaEuhZ8CsnMHRudSdYkU_Dbm2XXfWheEk5-93DvPQidUTKjlMifq_nT1YwRxmacUVqW5AAdMyqagrG6-rJ_i_oIncb4QvJpsiSbQ3TEBatETatjZB-Sb__qmGyL79fJjnrAc-9S8APufcC_vfEJ32ln19Ogk_UOP7zaYcBL0MFZ94wfXQcBr-wIxR8d3rdSCyFp6_DC_bPBuxFc-oa-9nqIcLq7T9Djr8VqflMs769v55fLouWlTAWTraBdnpAaYbiRhplKaMEN72uQsqItN1UtDJVCcgaNIMB5SUume95VneYn6MfWdx382wQxqdHGFoZBO_BTVKxmoiRNUzYZvfgPffFTcLk7xbI9KWm2zhTdUm3wMQbo1TrkPYV3RYnaRKE2UahNFGoXRa75vnOezAjdvuJz8Rk43wIWAPbfUjJe1TX_AFUHjF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969041334</pqid></control><display><type>article</type><title>Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xing ; Liu, Zhengxiong ; Huang, Panfeng</creator><creatorcontrib>Liu, Xing ; Liu, Zhengxiong ; Huang, Panfeng</creatorcontrib><description>In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2022.3211440</identifier><identifier>PMID: 36256715</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Control methods ; Environment models ; Feedforward control ; Gaussian process ; Gaussian processes ; Impedance ; iterative linear quadratic Gaussian with learned external dynamic (ILQG-LED) method ; Iterative methods ; Manipulator dynamics ; model-based reinforcement learning ; Nonlinear systems ; Optimal control ; Parameters ; Robot arms ; Robot control ; robot manipulation skill ; robot-environment interaction ; Robots ; stochastic optimal manipulation control ; Stochastic processes ; System dynamics ; Task complexity ; Time-varying systems ; time-varying uncertain environment ; Trajectory ; Unknown environments</subject><ispartof>IEEE transactions on cybernetics, 2024-04, Vol.54 (4), p.2015-2025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3</citedby><cites>FETCH-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3</cites><orcidid>0000-0002-5327-4908 ; 0000-0002-9427-4066 ; 0000-0002-5132-9602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9923577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9923577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36256715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Liu, Zhengxiong</creatorcontrib><creatorcontrib>Huang, Panfeng</creatorcontrib><title>Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks.</description><subject>Control methods</subject><subject>Environment models</subject><subject>Feedforward control</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Impedance</subject><subject>iterative linear quadratic Gaussian with learned external dynamic (ILQG-LED) method</subject><subject>Iterative methods</subject><subject>Manipulator dynamics</subject><subject>model-based reinforcement learning</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robot manipulation skill</subject><subject>robot-environment interaction</subject><subject>Robots</subject><subject>stochastic optimal manipulation control</subject><subject>Stochastic processes</subject><subject>System dynamics</subject><subject>Task complexity</subject><subject>Time-varying systems</subject><subject>time-varying uncertain environment</subject><subject>Trajectory</subject><subject>Unknown environments</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV9LHDEUxYO0qFg_gAgl4EtfZps_M5nJoy5bFVaEuhZ8CsnMHRudSdYkU_Dbm2XXfWheEk5-93DvPQidUTKjlMifq_nT1YwRxmacUVqW5AAdMyqagrG6-rJ_i_oIncb4QvJpsiSbQ3TEBatETatjZB-Sb__qmGyL79fJjnrAc-9S8APufcC_vfEJ32ln19Ogk_UOP7zaYcBL0MFZ94wfXQcBr-wIxR8d3rdSCyFp6_DC_bPBuxFc-oa-9nqIcLq7T9Djr8VqflMs769v55fLouWlTAWTraBdnpAaYbiRhplKaMEN72uQsqItN1UtDJVCcgaNIMB5SUume95VneYn6MfWdx382wQxqdHGFoZBO_BTVKxmoiRNUzYZvfgPffFTcLk7xbI9KWm2zhTdUm3wMQbo1TrkPYV3RYnaRKE2UahNFGoXRa75vnOezAjdvuJz8Rk43wIWAPbfUjJe1TX_AFUHjF8</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Xing</creator><creator>Liu, Zhengxiong</creator><creator>Huang, Panfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5327-4908</orcidid><orcidid>https://orcid.org/0000-0002-9427-4066</orcidid><orcidid>https://orcid.org/0000-0002-5132-9602</orcidid></search><sort><creationdate>20240401</creationdate><title>Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment</title><author>Liu, Xing ; Liu, Zhengxiong ; Huang, Panfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control methods</topic><topic>Environment models</topic><topic>Feedforward control</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Impedance</topic><topic>iterative linear quadratic Gaussian with learned external dynamic (ILQG-LED) method</topic><topic>Iterative methods</topic><topic>Manipulator dynamics</topic><topic>model-based reinforcement learning</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robot manipulation skill</topic><topic>robot-environment interaction</topic><topic>Robots</topic><topic>stochastic optimal manipulation control</topic><topic>Stochastic processes</topic><topic>System dynamics</topic><topic>Task complexity</topic><topic>Time-varying systems</topic><topic>time-varying uncertain environment</topic><topic>Trajectory</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Liu, Zhengxiong</creatorcontrib><creatorcontrib>Huang, Panfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xing</au><au>Liu, Zhengxiong</au><au>Huang, Panfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>54</volume><issue>4</issue><spage>2015</spage><epage>2025</epage><pages>2015-2025</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36256715</pmid><doi>10.1109/TCYB.2022.3211440</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5327-4908</orcidid><orcidid>https://orcid.org/0000-0002-9427-4066</orcidid><orcidid>https://orcid.org/0000-0002-5132-9602</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-04, Vol.54 (4), p.2015-2025
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_9923577
source IEEE Electronic Library (IEL)
subjects Control methods
Environment models
Feedforward control
Gaussian process
Gaussian processes
Impedance
iterative linear quadratic Gaussian with learned external dynamic (ILQG-LED) method
Iterative methods
Manipulator dynamics
model-based reinforcement learning
Nonlinear systems
Optimal control
Parameters
Robot arms
Robot control
robot manipulation skill
robot-environment interaction
Robots
stochastic optimal manipulation control
Stochastic processes
System dynamics
Task complexity
Time-varying systems
time-varying uncertain environment
Trajectory
Unknown environments
title Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimal%20Control%20for%20Robot%20Manipulation%20Skill%20Learning%20Under%20Time-Varying%20Uncertain%20Environment&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Liu,%20Xing&rft.date=2024-04-01&rft.volume=54&rft.issue=4&rft.spage=2015&rft.epage=2025&rft.pages=2015-2025&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2022.3211440&rft_dat=%3Cproquest_RIE%3E2969041334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969041334&rft_id=info:pmid/36256715&rft_ieee_id=9923577&rfr_iscdi=true