Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach

Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2023-04, Vol.22 (4), p.1-1
Hauptverfasser: Zhang, Haijun, Huang, Miaolin, Zhou, Huan, Wang, Xianmei, Wang, Ning, Long, Keping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume 22
creator Zhang, Haijun
Huang, Miaolin
Zhou, Huan
Wang, Xianmei
Wang, Ning
Long, Keping
description Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.
doi_str_mv 10.1109/TWC.2022.3212830
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9919620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9919620</ieee_id><sourcerecordid>2799845563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</originalsourceid><addsrcrecordid>eNpFkFtLwzAUx4MoOKfvgi8BnztzadPGt1Jvg7mp2_QxpGlKM91akwydn96MDYUD53D4X-AHwDlGA4wRv5q9FQOCCBlQgklG0QHo4STJIkLi7HB7UxZhkrJjcOLcAiGcsiTpgaaQnVTGb-Cj_DZL8yO9aVfQrODLcBrN81c41v6rte_uGubw5uZ5HJXS6QrOrFxo5Vu7gXJVwacmfOG0MbWHk87_J-VdZ1upmlNwVMsPp8_2uw_md7ez4iEaTe6HRT6KFOHYRxQzrSRVpazKRCVxnOlwacaJVlXJSRrzMGVWUVVrjGiccpVixUjFMkRqTPvgcpcbaj_X2nmxaNd2FSoFSTnP4iRhNKjQTqVs65zVteisWUq7ERiJLU8ReIotT7HnGSwXO4vRWv_JOcecEUR_AS_5cOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799845563</pqid></control><display><type>article</type><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</creator><creatorcontrib>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</creatorcontrib><description>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3212830</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; deep reinforcement learning ; Energy consumption ; Maximization ; NOMA ; Nonorthogonal multiple access ; Optimization ; Phase shift ; phase shift matrix ; reconfigurable intelligent surface ; Reinforcement learning ; Relays ; Trajectory ; UAV ; Unmanned aerial vehicles ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</citedby><cites>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</cites><orcidid>0000-0002-0236-6482 ; 0000-0003-4007-7224 ; 0000-0001-9403-3417 ; 0000-0001-6678-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9919620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9919620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Miaolin</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Xianmei</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>deep reinforcement learning</subject><subject>Energy consumption</subject><subject>Maximization</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Phase shift</subject><subject>phase shift matrix</subject><subject>reconfigurable intelligent surface</subject><subject>Reinforcement learning</subject><subject>Relays</subject><subject>Trajectory</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFtLwzAUx4MoOKfvgi8BnztzadPGt1Jvg7mp2_QxpGlKM91akwydn96MDYUD53D4X-AHwDlGA4wRv5q9FQOCCBlQgklG0QHo4STJIkLi7HB7UxZhkrJjcOLcAiGcsiTpgaaQnVTGb-Cj_DZL8yO9aVfQrODLcBrN81c41v6rte_uGubw5uZ5HJXS6QrOrFxo5Vu7gXJVwacmfOG0MbWHk87_J-VdZ1upmlNwVMsPp8_2uw_md7ez4iEaTe6HRT6KFOHYRxQzrSRVpazKRCVxnOlwacaJVlXJSRrzMGVWUVVrjGiccpVixUjFMkRqTPvgcpcbaj_X2nmxaNd2FSoFSTnP4iRhNKjQTqVs65zVteisWUq7ERiJLU8ReIotT7HnGSwXO4vRWv_JOcecEUR_AS_5cOQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Haijun</creator><creator>Huang, Miaolin</creator><creator>Zhou, Huan</creator><creator>Wang, Xianmei</creator><creator>Wang, Ning</creator><creator>Long, Keping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid><orcidid>https://orcid.org/0000-0003-4007-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid></search><sort><creationdate>20230401</creationdate><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><author>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>deep reinforcement learning</topic><topic>Energy consumption</topic><topic>Maximization</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Phase shift</topic><topic>phase shift matrix</topic><topic>reconfigurable intelligent surface</topic><topic>Reinforcement learning</topic><topic>Relays</topic><topic>Trajectory</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Miaolin</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Xianmei</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haijun</au><au>Huang, Miaolin</au><au>Zhou, Huan</au><au>Wang, Xianmei</au><au>Wang, Ning</au><au>Long, Keping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3212830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid><orcidid>https://orcid.org/0000-0003-4007-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9919620
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous aerial vehicles
deep reinforcement learning
Energy consumption
Maximization
NOMA
Nonorthogonal multiple access
Optimization
Phase shift
phase shift matrix
reconfigurable intelligent surface
Reinforcement learning
Relays
Trajectory
UAV
Unmanned aerial vehicles
Wireless communication
Wireless networks
title Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20Maximization%20in%20RIS-UAV%20Networks:%20A%20DDQN-based%20Trajectory%20and%20Phase%20Shift%20Optimization%20Approach&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhang,%20Haijun&rft.date=2023-04-01&rft.volume=22&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3212830&rft_dat=%3Cproquest_RIE%3E2799845563%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799845563&rft_id=info:pmid/&rft_ieee_id=9919620&rfr_iscdi=true