Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach
Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equip...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2023-04, Vol.22 (4), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on wireless communications |
container_volume | 22 |
creator | Zhang, Haijun Huang, Miaolin Zhou, Huan Wang, Xianmei Wang, Ning Long, Keping |
description | Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks. |
doi_str_mv | 10.1109/TWC.2022.3212830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9919620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9919620</ieee_id><sourcerecordid>2799845563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</originalsourceid><addsrcrecordid>eNpFkFtLwzAUx4MoOKfvgi8BnztzadPGt1Jvg7mp2_QxpGlKM91akwydn96MDYUD53D4X-AHwDlGA4wRv5q9FQOCCBlQgklG0QHo4STJIkLi7HB7UxZhkrJjcOLcAiGcsiTpgaaQnVTGb-Cj_DZL8yO9aVfQrODLcBrN81c41v6rte_uGubw5uZ5HJXS6QrOrFxo5Vu7gXJVwacmfOG0MbWHk87_J-VdZ1upmlNwVMsPp8_2uw_md7ez4iEaTe6HRT6KFOHYRxQzrSRVpazKRCVxnOlwacaJVlXJSRrzMGVWUVVrjGiccpVixUjFMkRqTPvgcpcbaj_X2nmxaNd2FSoFSTnP4iRhNKjQTqVs65zVteisWUq7ERiJLU8ReIotT7HnGSwXO4vRWv_JOcecEUR_AS_5cOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799845563</pqid></control><display><type>article</type><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</creator><creatorcontrib>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</creatorcontrib><description>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3212830</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; deep reinforcement learning ; Energy consumption ; Maximization ; NOMA ; Nonorthogonal multiple access ; Optimization ; Phase shift ; phase shift matrix ; reconfigurable intelligent surface ; Reinforcement learning ; Relays ; Trajectory ; UAV ; Unmanned aerial vehicles ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</citedby><cites>FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</cites><orcidid>0000-0002-0236-6482 ; 0000-0003-4007-7224 ; 0000-0001-9403-3417 ; 0000-0001-6678-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9919620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9919620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Miaolin</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Xianmei</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>deep reinforcement learning</subject><subject>Energy consumption</subject><subject>Maximization</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Phase shift</subject><subject>phase shift matrix</subject><subject>reconfigurable intelligent surface</subject><subject>Reinforcement learning</subject><subject>Relays</subject><subject>Trajectory</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFtLwzAUx4MoOKfvgi8BnztzadPGt1Jvg7mp2_QxpGlKM91akwydn96MDYUD53D4X-AHwDlGA4wRv5q9FQOCCBlQgklG0QHo4STJIkLi7HB7UxZhkrJjcOLcAiGcsiTpgaaQnVTGb-Cj_DZL8yO9aVfQrODLcBrN81c41v6rte_uGubw5uZ5HJXS6QrOrFxo5Vu7gXJVwacmfOG0MbWHk87_J-VdZ1upmlNwVMsPp8_2uw_md7ez4iEaTe6HRT6KFOHYRxQzrSRVpazKRCVxnOlwacaJVlXJSRrzMGVWUVVrjGiccpVixUjFMkRqTPvgcpcbaj_X2nmxaNd2FSoFSTnP4iRhNKjQTqVs65zVteisWUq7ERiJLU8ReIotT7HnGSwXO4vRWv_JOcecEUR_AS_5cOQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Haijun</creator><creator>Huang, Miaolin</creator><creator>Zhou, Huan</creator><creator>Wang, Xianmei</creator><creator>Wang, Ning</creator><creator>Long, Keping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid><orcidid>https://orcid.org/0000-0003-4007-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid></search><sort><creationdate>20230401</creationdate><title>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</title><author>Zhang, Haijun ; Huang, Miaolin ; Zhou, Huan ; Wang, Xianmei ; Wang, Ning ; Long, Keping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-316eca3cbadb5c5448eadbe692ecdb92749749b8d3cfe103479c71c62d6802f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>deep reinforcement learning</topic><topic>Energy consumption</topic><topic>Maximization</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Phase shift</topic><topic>phase shift matrix</topic><topic>reconfigurable intelligent surface</topic><topic>Reinforcement learning</topic><topic>Relays</topic><topic>Trajectory</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Miaolin</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Xianmei</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Long, Keping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haijun</au><au>Huang, Miaolin</au><au>Zhou, Huan</au><au>Wang, Xianmei</au><au>Wang, Ning</au><au>Long, Keping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Reconfigurable Intelligent Surface (RIS) has grown rapidly due to its performance improvement for wireless networks, and the integration of unmanned aerial vehicle (UAV) and RIS has obtained widespread attention. In this paper, the downlink of non-orthogonal multiple access (NOMA) UAV networks equipped with RIS is considered. The objective is to optimize the UAV trajectory with RIS phase shift to maximize the system capacity under the UAV energy consumption constraint. By deep reinforcement learning, a capacity maximization scheme under energy consumption constraints based on double deep Q-Network (DDQN) is proposed. The joint optimization of UAV trajectory with RIS phase shift design is achieved by DDQN algorithm. From the numerical results, the proposed optimization scheme can increase the system capacity of the RIS-UAV-assisted NOMA networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3212830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0236-6482</orcidid><orcidid>https://orcid.org/0000-0003-4007-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid><orcidid>https://orcid.org/0000-0001-6678-6075</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.1-1 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_9919620 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous aerial vehicles deep reinforcement learning Energy consumption Maximization NOMA Nonorthogonal multiple access Optimization Phase shift phase shift matrix reconfigurable intelligent surface Reinforcement learning Relays Trajectory UAV Unmanned aerial vehicles Wireless communication Wireless networks |
title | Capacity Maximization in RIS-UAV Networks: A DDQN-based Trajectory and Phase Shift Optimization Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20Maximization%20in%20RIS-UAV%20Networks:%20A%20DDQN-based%20Trajectory%20and%20Phase%20Shift%20Optimization%20Approach&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhang,%20Haijun&rft.date=2023-04-01&rft.volume=22&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3212830&rft_dat=%3Cproquest_RIE%3E2799845563%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799845563&rft_id=info:pmid/&rft_ieee_id=9919620&rfr_iscdi=true |