A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data

The growing use of probe vehicles generates a huge number of global navigation satellite systems (GNSS) data. Limited by satellite positioning technology, further improving the accuracy of map matching (MM) is challenging work, especially for low-frequency trajectories. When matching a trajectory, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent transportation systems magazine 2023-03, p.2-14
Hauptverfasser: Fang, Jie, Wu, Xiongwei, Lin, Dianchao, Xu, Mengyun, Wu, Huahua, Wu, Xuesong, Bi, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 2
container_title IEEE intelligent transportation systems magazine
container_volume
creator Fang, Jie
Wu, Xiongwei
Lin, Dianchao
Xu, Mengyun
Wu, Huahua
Wu, Xuesong
Bi, Ting
description The growing use of probe vehicles generates a huge number of global navigation satellite systems (GNSS) data. Limited by satellite positioning technology, further improving the accuracy of map matching (MM) is challenging work, especially for low-frequency trajectories. When matching a trajectory, the ego vehicle's spatial-temporal information of the present trip is most useful with the least amount of data. In addition, there is a large number of other data, e.g., other vehicles' state and past prediction results, but it is hard to extract useful information for matching maps and inferring paths. Most of the MM studies have used only the ego vehicle's data and ignored other vehicles' data. Based on those, this article designs a new MM method to make full use of "big data." We first sort all the data into four groups according to their spatial and temporal distance from the present matching probe, which allows us to sort for their usefulness. Then we design three different methods to extract valuable information (scores) from them: a score for speed and bearing, one for historical usage, and another for traffic state using a spectral graph Markov neural network. Finally, we use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path (projected location). We test the proposed method against baseline algorithms using a real-world dataset in China. The results show that all scoring methods can enhance MM accuracy. Furthermore, our method outperforms the others, especially when the GNSS probing frequency is ≤ 0.01Hz.
doi_str_mv 10.1109/MITS.2022.3207831
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9916311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9916311</ieee_id><sourcerecordid>9916311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-2d9156d2f3b646b432a8fac4aeb395f44c5b87e197f94956ba5cf1020718f95c3</originalsourceid><addsrcrecordid>eNotj89OAjEYxHvQRII8gPHSF1js13_sdyQISrIbD2KMJ9ItLdTAFks3ytuzUecw80smmWQIuQM2BmD4UC9Xr2POOB8LzialgCsyABRYgEB2Q0an0yfrJXipOQ7Ix5TW5ljUJttdaLd0ut_GFPLuQN97p_OfnIzNIbY0elp3-xy2KXZHumx9TAfz2_REq_hdLJL76lxrz_TRZHNLrr3Zn9zoP4fkbTFfzZ6L6uVpOZtWRQCmcsE3CEpvuBeNlrqRgpvSGyuNawQqL6VVTTlxgBOPEpVujLIeWP8NSo_KiiG5_9sNzrn1MYWDSec1ImgBIC4HnlAV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Jie ; Wu, Xiongwei ; Lin, Dianchao ; Xu, Mengyun ; Wu, Huahua ; Wu, Xuesong ; Bi, Ting</creator><creatorcontrib>Fang, Jie ; Wu, Xiongwei ; Lin, Dianchao ; Xu, Mengyun ; Wu, Huahua ; Wu, Xuesong ; Bi, Ting</creatorcontrib><description>The growing use of probe vehicles generates a huge number of global navigation satellite systems (GNSS) data. Limited by satellite positioning technology, further improving the accuracy of map matching (MM) is challenging work, especially for low-frequency trajectories. When matching a trajectory, the ego vehicle's spatial-temporal information of the present trip is most useful with the least amount of data. In addition, there is a large number of other data, e.g., other vehicles' state and past prediction results, but it is hard to extract useful information for matching maps and inferring paths. Most of the MM studies have used only the ego vehicle's data and ignored other vehicles' data. Based on those, this article designs a new MM method to make full use of "big data." We first sort all the data into four groups according to their spatial and temporal distance from the present matching probe, which allows us to sort for their usefulness. Then we design three different methods to extract valuable information (scores) from them: a score for speed and bearing, one for historical usage, and another for traffic state using a spectral graph Markov neural network. Finally, we use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path (projected location). We test the proposed method against baseline algorithms using a real-world dataset in China. The results show that all scoring methods can enhance MM accuracy. Furthermore, our method outperforms the others, especially when the GNSS probing frequency is ≤ 0.01Hz.</description><identifier>ISSN: 1939-1390</identifier><identifier>DOI: 10.1109/MITS.2022.3207831</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Collaboration ; Data mining ; Global navigation satellite system ; Probes ; Satellites ; Trajectory</subject><ispartof>IEEE intelligent transportation systems magazine, 2023-03, p.2-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3733-0444 ; 0000-0002-3875-8840 ; 0000-0002-0076-8453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9916311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9916311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Wu, Xiongwei</creatorcontrib><creatorcontrib>Lin, Dianchao</creatorcontrib><creatorcontrib>Xu, Mengyun</creatorcontrib><creatorcontrib>Wu, Huahua</creatorcontrib><creatorcontrib>Wu, Xuesong</creatorcontrib><creatorcontrib>Bi, Ting</creatorcontrib><title>A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>The growing use of probe vehicles generates a huge number of global navigation satellite systems (GNSS) data. Limited by satellite positioning technology, further improving the accuracy of map matching (MM) is challenging work, especially for low-frequency trajectories. When matching a trajectory, the ego vehicle's spatial-temporal information of the present trip is most useful with the least amount of data. In addition, there is a large number of other data, e.g., other vehicles' state and past prediction results, but it is hard to extract useful information for matching maps and inferring paths. Most of the MM studies have used only the ego vehicle's data and ignored other vehicles' data. Based on those, this article designs a new MM method to make full use of "big data." We first sort all the data into four groups according to their spatial and temporal distance from the present matching probe, which allows us to sort for their usefulness. Then we design three different methods to extract valuable information (scores) from them: a score for speed and bearing, one for historical usage, and another for traffic state using a spectral graph Markov neural network. Finally, we use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path (projected location). We test the proposed method against baseline algorithms using a real-world dataset in China. The results show that all scoring methods can enhance MM accuracy. Furthermore, our method outperforms the others, especially when the GNSS probing frequency is ≤ 0.01Hz.</description><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Data mining</subject><subject>Global navigation satellite system</subject><subject>Probes</subject><subject>Satellites</subject><subject>Trajectory</subject><issn>1939-1390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj89OAjEYxHvQRII8gPHSF1js13_sdyQISrIbD2KMJ9ItLdTAFks3ytuzUecw80smmWQIuQM2BmD4UC9Xr2POOB8LzialgCsyABRYgEB2Q0an0yfrJXipOQ7Ix5TW5ljUJttdaLd0ut_GFPLuQN97p_OfnIzNIbY0elp3-xy2KXZHumx9TAfz2_REq_hdLJL76lxrz_TRZHNLrr3Zn9zoP4fkbTFfzZ6L6uVpOZtWRQCmcsE3CEpvuBeNlrqRgpvSGyuNawQqL6VVTTlxgBOPEpVujLIeWP8NSo_KiiG5_9sNzrn1MYWDSec1ImgBIC4HnlAV</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Fang, Jie</creator><creator>Wu, Xiongwei</creator><creator>Lin, Dianchao</creator><creator>Xu, Mengyun</creator><creator>Wu, Huahua</creator><creator>Wu, Xuesong</creator><creator>Bi, Ting</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-3733-0444</orcidid><orcidid>https://orcid.org/0000-0002-3875-8840</orcidid><orcidid>https://orcid.org/0000-0002-0076-8453</orcidid></search><sort><creationdate>20230301</creationdate><title>A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data</title><author>Fang, Jie ; Wu, Xiongwei ; Lin, Dianchao ; Xu, Mengyun ; Wu, Huahua ; Wu, Xuesong ; Bi, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-2d9156d2f3b646b432a8fac4aeb395f44c5b87e197f94956ba5cf1020718f95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Data mining</topic><topic>Global navigation satellite system</topic><topic>Probes</topic><topic>Satellites</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Wu, Xiongwei</creatorcontrib><creatorcontrib>Lin, Dianchao</creatorcontrib><creatorcontrib>Xu, Mengyun</creatorcontrib><creatorcontrib>Wu, Huahua</creatorcontrib><creatorcontrib>Wu, Xuesong</creatorcontrib><creatorcontrib>Bi, Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Jie</au><au>Wu, Xiongwei</au><au>Lin, Dianchao</au><au>Xu, Mengyun</au><au>Wu, Huahua</au><au>Wu, Xuesong</au><au>Bi, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2023-03-01</date><risdate>2023</risdate><spage>2</spage><epage>14</epage><pages>2-14</pages><issn>1939-1390</issn><coden>IITSBO</coden><abstract>The growing use of probe vehicles generates a huge number of global navigation satellite systems (GNSS) data. Limited by satellite positioning technology, further improving the accuracy of map matching (MM) is challenging work, especially for low-frequency trajectories. When matching a trajectory, the ego vehicle's spatial-temporal information of the present trip is most useful with the least amount of data. In addition, there is a large number of other data, e.g., other vehicles' state and past prediction results, but it is hard to extract useful information for matching maps and inferring paths. Most of the MM studies have used only the ego vehicle's data and ignored other vehicles' data. Based on those, this article designs a new MM method to make full use of "big data." We first sort all the data into four groups according to their spatial and temporal distance from the present matching probe, which allows us to sort for their usefulness. Then we design three different methods to extract valuable information (scores) from them: a score for speed and bearing, one for historical usage, and another for traffic state using a spectral graph Markov neural network. Finally, we use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path (projected location). We test the proposed method against baseline algorithms using a real-world dataset in China. The results show that all scoring methods can enhance MM accuracy. Furthermore, our method outperforms the others, especially when the GNSS probing frequency is ≤ 0.01Hz.</abstract><pub>IEEE</pub><doi>10.1109/MITS.2022.3207831</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3733-0444</orcidid><orcidid>https://orcid.org/0000-0002-3875-8840</orcidid><orcidid>https://orcid.org/0000-0002-0076-8453</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1390
ispartof IEEE intelligent transportation systems magazine, 2023-03, p.2-14
issn 1939-1390
language eng
recordid cdi_ieee_primary_9916311
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Collaboration
Data mining
Global navigation satellite system
Probes
Satellites
Trajectory
title A Map-Matching Algorithm With Extraction of Multigroup Information for Low-Frequency Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Map-Matching%20Algorithm%20With%20Extraction%20of%20Multigroup%20Information%20for%20Low-Frequency%20Data&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Fang,%20Jie&rft.date=2023-03-01&rft.spage=2&rft.epage=14&rft.pages=2-14&rft.issn=1939-1390&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2022.3207831&rft_dat=%3Cieee_RIE%3E9916311%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9916311&rfr_iscdi=true