Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs

This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Nguyen, Lanh V., Phung, M.D., Ha, Q.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Nguyen, Lanh V.
Phung, M.D.
Ha, Q.P.
description This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.
doi_str_mv 10.1109/ACCESS.2022.3213035
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9913973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913973</ieee_id><doaj_id>oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198</doaj_id><sourcerecordid>2726120536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</originalsourceid><addsrcrecordid>eNpNkEFrwkAQhUNpoWL9BV4CPcfu7CbZ7FGCtYJFQe112d1MNBKz6SYW_PeNjUjnMsNj3pvh87wxkAkAEW_TNJ1tNhNKKJ0wCoyw6MEbUIhFwCIWP_6bn71R0xxJV0knRXzgzebqhP72gNZdAq0azPxV3RYnVfqptTU61RY_6K9Ve_DXpaqqotr7uXX-57lsi7pEfzf9al68p1yVDY5ufejt3mfb9CNYruaLdLoMTEiSNqBM05AnEVcZFzQWkMRaIxqVIZAcQx2SyMSEJoYjEZwjhQhDAzSPQGeUsKG36HMzq46ydt2f7iKtKuSfYN1eKtcWpkSpDcQMGUPDTKhyomMeZiHoiOcGQCRd1mufVTv7fcamlUd7dlX3vqScxkBJB6zbYv2WcbZpHOb3q0DkFb_s8csrfnnD37nGvatAxLtDCGCCM_YLuv5-8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726120536</pqid></control><display><type>article</type><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</creator><creatorcontrib>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</creatorcontrib><description>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3213035</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Cooperative path planning ; Cost function ; Game theory ; Nash equilibrium ; Particle swarm optimization ; Path planning ; PSO ; Stackelberg-Nash game ; Task analysis ; UAV ; Unmanned aerial vehicles ; Working conditions</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</citedby><cites>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</cites><orcidid>0000-0003-0978-1758 ; 0000-0003-4665-8863 ; 0000-0001-5247-6180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913973$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Lanh V.</creatorcontrib><creatorcontrib>Phung, M.D.</creatorcontrib><creatorcontrib>Ha, Q.P.</creatorcontrib><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Cooperative path planning</subject><subject>Cost function</subject><subject>Game theory</subject><subject>Nash equilibrium</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>PSO</subject><subject>Stackelberg-Nash game</subject><subject>Task analysis</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Working conditions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEFrwkAQhUNpoWL9BV4CPcfu7CbZ7FGCtYJFQe112d1MNBKz6SYW_PeNjUjnMsNj3pvh87wxkAkAEW_TNJ1tNhNKKJ0wCoyw6MEbUIhFwCIWP_6bn71R0xxJV0knRXzgzebqhP72gNZdAq0azPxV3RYnVfqptTU61RY_6K9Ve_DXpaqqotr7uXX-57lsi7pEfzf9al68p1yVDY5ufejt3mfb9CNYruaLdLoMTEiSNqBM05AnEVcZFzQWkMRaIxqVIZAcQx2SyMSEJoYjEZwjhQhDAzSPQGeUsKG36HMzq46ydt2f7iKtKuSfYN1eKtcWpkSpDcQMGUPDTKhyomMeZiHoiOcGQCRd1mufVTv7fcamlUd7dlX3vqScxkBJB6zbYv2WcbZpHOb3q0DkFb_s8csrfnnD37nGvatAxLtDCGCCM_YLuv5-8g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Lanh V.</creator><creator>Phung, M.D.</creator><creator>Ha, Q.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0978-1758</orcidid><orcidid>https://orcid.org/0000-0003-4665-8863</orcidid><orcidid>https://orcid.org/0000-0001-5247-6180</orcidid></search><sort><creationdate>2022</creationdate><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><author>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Cooperative path planning</topic><topic>Cost function</topic><topic>Game theory</topic><topic>Nash equilibrium</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>PSO</topic><topic>Stackelberg-Nash game</topic><topic>Task analysis</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Lanh V.</creatorcontrib><creatorcontrib>Phung, M.D.</creatorcontrib><creatorcontrib>Ha, Q.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Lanh V.</au><au>Phung, M.D.</au><au>Ha, Q.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3213035</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0978-1758</orcidid><orcidid>https://orcid.org/0000-0003-4665-8863</orcidid><orcidid>https://orcid.org/0000-0001-5247-6180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9913973
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Autonomous aerial vehicles
Cooperative path planning
Cost function
Game theory
Nash equilibrium
Particle swarm optimization
Path planning
PSO
Stackelberg-Nash game
Task analysis
UAV
Unmanned aerial vehicles
Working conditions
title Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Game%20Theory-based%20Optimal%20Cooperative%20Path%20Planning%20for%20Multiple%20UAVs&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Lanh%20V.&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3213035&rft_dat=%3Cproquest_ieee_%3E2726120536%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726120536&rft_id=info:pmid/&rft_ieee_id=9913973&rft_doaj_id=oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198&rfr_iscdi=true