Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs
This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and co...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Nguyen, Lanh V. Phung, M.D. Ha, Q.P. |
description | This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application. |
doi_str_mv | 10.1109/ACCESS.2022.3213035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9913973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913973</ieee_id><doaj_id>oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198</doaj_id><sourcerecordid>2726120536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</originalsourceid><addsrcrecordid>eNpNkEFrwkAQhUNpoWL9BV4CPcfu7CbZ7FGCtYJFQe112d1MNBKz6SYW_PeNjUjnMsNj3pvh87wxkAkAEW_TNJ1tNhNKKJ0wCoyw6MEbUIhFwCIWP_6bn71R0xxJV0knRXzgzebqhP72gNZdAq0azPxV3RYnVfqptTU61RY_6K9Ve_DXpaqqotr7uXX-57lsi7pEfzf9al68p1yVDY5ufejt3mfb9CNYruaLdLoMTEiSNqBM05AnEVcZFzQWkMRaIxqVIZAcQx2SyMSEJoYjEZwjhQhDAzSPQGeUsKG36HMzq46ydt2f7iKtKuSfYN1eKtcWpkSpDcQMGUPDTKhyomMeZiHoiOcGQCRd1mufVTv7fcamlUd7dlX3vqScxkBJB6zbYv2WcbZpHOb3q0DkFb_s8csrfnnD37nGvatAxLtDCGCCM_YLuv5-8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726120536</pqid></control><display><type>article</type><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</creator><creatorcontrib>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</creatorcontrib><description>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3213035</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Cooperative path planning ; Cost function ; Game theory ; Nash equilibrium ; Particle swarm optimization ; Path planning ; PSO ; Stackelberg-Nash game ; Task analysis ; UAV ; Unmanned aerial vehicles ; Working conditions</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</citedby><cites>FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</cites><orcidid>0000-0003-0978-1758 ; 0000-0003-4665-8863 ; 0000-0001-5247-6180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913973$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Lanh V.</creatorcontrib><creatorcontrib>Phung, M.D.</creatorcontrib><creatorcontrib>Ha, Q.P.</creatorcontrib><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Cooperative path planning</subject><subject>Cost function</subject><subject>Game theory</subject><subject>Nash equilibrium</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>PSO</subject><subject>Stackelberg-Nash game</subject><subject>Task analysis</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Working conditions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEFrwkAQhUNpoWL9BV4CPcfu7CbZ7FGCtYJFQe112d1MNBKz6SYW_PeNjUjnMsNj3pvh87wxkAkAEW_TNJ1tNhNKKJ0wCoyw6MEbUIhFwCIWP_6bn71R0xxJV0knRXzgzebqhP72gNZdAq0azPxV3RYnVfqptTU61RY_6K9Ve_DXpaqqotr7uXX-57lsi7pEfzf9al68p1yVDY5ufejt3mfb9CNYruaLdLoMTEiSNqBM05AnEVcZFzQWkMRaIxqVIZAcQx2SyMSEJoYjEZwjhQhDAzSPQGeUsKG36HMzq46ydt2f7iKtKuSfYN1eKtcWpkSpDcQMGUPDTKhyomMeZiHoiOcGQCRd1mufVTv7fcamlUd7dlX3vqScxkBJB6zbYv2WcbZpHOb3q0DkFb_s8csrfnnD37nGvatAxLtDCGCCM_YLuv5-8g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Lanh V.</creator><creator>Phung, M.D.</creator><creator>Ha, Q.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0978-1758</orcidid><orcidid>https://orcid.org/0000-0003-4665-8863</orcidid><orcidid>https://orcid.org/0000-0001-5247-6180</orcidid></search><sort><creationdate>2022</creationdate><title>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</title><author>Nguyen, Lanh V. ; Phung, M.D. ; Ha, Q.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-23b247857ad79269186bbeecade10fe4b405c6028c7e0977e215e4c12f51bd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Cooperative path planning</topic><topic>Cost function</topic><topic>Game theory</topic><topic>Nash equilibrium</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>PSO</topic><topic>Stackelberg-Nash game</topic><topic>Task analysis</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Lanh V.</creatorcontrib><creatorcontrib>Phung, M.D.</creatorcontrib><creatorcontrib>Ha, Q.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Lanh V.</au><au>Phung, M.D.</au><au>Ha, Q.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3213035</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0978-1758</orcidid><orcidid>https://orcid.org/0000-0003-4665-8863</orcidid><orcidid>https://orcid.org/0000-0001-5247-6180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9913973 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Autonomous aerial vehicles Cooperative path planning Cost function Game theory Nash equilibrium Particle swarm optimization Path planning PSO Stackelberg-Nash game Task analysis UAV Unmanned aerial vehicles Working conditions |
title | Game Theory-based Optimal Cooperative Path Planning for Multiple UAVs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Game%20Theory-based%20Optimal%20Cooperative%20Path%20Planning%20for%20Multiple%20UAVs&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Lanh%20V.&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3213035&rft_dat=%3Cproquest_ieee_%3E2726120536%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726120536&rft_id=info:pmid/&rft_ieee_id=9913973&rft_doaj_id=oai_doaj_org_article_bc163e33ec3c4af0b674d41b57fc1198&rfr_iscdi=true |