Supercapacitor Modeling: A System Identification Approach

Recently a great deal of attention has been given to supercapacitors (SC) due to their outstanding power densities and long cycling life. Their behavior has been extensively analyzed and tested through several modeling approaches. One common technique for modeling the dynamic operation of SCs is thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2023-03, Vol.38 (1), p.1-11
Hauptverfasser: Slaifstein, Dario, Ibanez, Federico Martin, Siwek, Katarzyna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title IEEE transactions on energy conversion
container_volume 38
creator Slaifstein, Dario
Ibanez, Federico Martin
Siwek, Katarzyna
description Recently a great deal of attention has been given to supercapacitors (SC) due to their outstanding power densities and long cycling life. Their behavior has been extensively analyzed and tested through several modeling approaches. One common technique for modeling the dynamic operation of SCs is through an electrical circuit model (ECM). This article presents a new approach to identifying ECM parameters by applying subspace system identification (SSID) algorithms and incorporating coulombic efficiency. This novel application of SSID improves model accuracy by almost 50% in some cases compared to the literature procedures. This was done without manual tuning of the parameters, risk of non-convergence or any prior knowledge. The approach was validated at three different temperatures and with experimental data from an electric motorcycle. The resulting models are ready to be used as building blocks in a wide range of applications such as energy management systems, renewable power generation, electric vehicles, and microgrids.
doi_str_mv 10.1109/TEC.2022.3212617
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9913712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913712</ieee_id><sourcerecordid>2778699638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-32a13f493eb1e8ab05d44734f8791f4b2102d428565008e0ce19c1b9b57a248f3</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqWwI7FEYk5579lObLaqaqFSEUPLbDmOA6naJNjp0H9PqlZMt3x3J32MPSJMEEG_bOazCQHRhBNShvkVG6GUKgWQ-pqNQCmZKp3pW3YX4xYAhSQcMb0-dD4421lX921IPtrS7-rm-zWZJutj7P0-WZa-6euqdrav2yaZdl1orfu5ZzeV3UX_cMkx-1rMN7P3dPX5tpxNV6kjwj7lZJFXQnNfoFe2AFkKkXNRqVxjJQpCoFKQkpkEUB6cR-2w0IXMLQlV8TF7Pu8Ot78HH3uzbQ-hGS4N5bnKtM64Gig4Uy60MQZfmS7UexuOBsGcBJlBkDkJMhdBQ-XpXKm99_-41shzJP4H-fJfeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778699638</pqid></control><display><type>article</type><title>Supercapacitor Modeling: A System Identification Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Slaifstein, Dario ; Ibanez, Federico Martin ; Siwek, Katarzyna</creator><creatorcontrib>Slaifstein, Dario ; Ibanez, Federico Martin ; Siwek, Katarzyna</creatorcontrib><description>Recently a great deal of attention has been given to supercapacitors (SC) due to their outstanding power densities and long cycling life. Their behavior has been extensively analyzed and tested through several modeling approaches. One common technique for modeling the dynamic operation of SCs is through an electrical circuit model (ECM). This article presents a new approach to identifying ECM parameters by applying subspace system identification (SSID) algorithms and incorporating coulombic efficiency. This novel application of SSID improves model accuracy by almost 50% in some cases compared to the literature procedures. This was done without manual tuning of the parameters, risk of non-convergence or any prior knowledge. The approach was validated at three different temperatures and with experimental data from an electric motorcycle. The resulting models are ready to be used as building blocks in a wide range of applications such as energy management systems, renewable power generation, electric vehicles, and microgrids.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2022.3212617</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacitors ; Circuits ; Distributed generation ; Electric motorcycles ; Electric vehicles ; Electrodes ; Energy management systems ; Equivalent circuits ; Integrated circuit modeling ; Mathematical models ; Model accuracy ; modeling ; Modelling ; Motorcycles ; Parameter identification ; power electronics ; storage ; subspace system identification ; supercapacitor ; Supercapacitors ; System identification ; Time-domain analysis ; Tuning</subject><ispartof>IEEE transactions on energy conversion, 2023-03, Vol.38 (1), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-32a13f493eb1e8ab05d44734f8791f4b2102d428565008e0ce19c1b9b57a248f3</citedby><cites>FETCH-LOGICAL-c221t-32a13f493eb1e8ab05d44734f8791f4b2102d428565008e0ce19c1b9b57a248f3</cites><orcidid>0000-0003-1560-4942 ; 0000-0001-8654-2131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9913712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Slaifstein, Dario</creatorcontrib><creatorcontrib>Ibanez, Federico Martin</creatorcontrib><creatorcontrib>Siwek, Katarzyna</creatorcontrib><title>Supercapacitor Modeling: A System Identification Approach</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>Recently a great deal of attention has been given to supercapacitors (SC) due to their outstanding power densities and long cycling life. Their behavior has been extensively analyzed and tested through several modeling approaches. One common technique for modeling the dynamic operation of SCs is through an electrical circuit model (ECM). This article presents a new approach to identifying ECM parameters by applying subspace system identification (SSID) algorithms and incorporating coulombic efficiency. This novel application of SSID improves model accuracy by almost 50% in some cases compared to the literature procedures. This was done without manual tuning of the parameters, risk of non-convergence or any prior knowledge. The approach was validated at three different temperatures and with experimental data from an electric motorcycle. The resulting models are ready to be used as building blocks in a wide range of applications such as energy management systems, renewable power generation, electric vehicles, and microgrids.</description><subject>Algorithms</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Distributed generation</subject><subject>Electric motorcycles</subject><subject>Electric vehicles</subject><subject>Electrodes</subject><subject>Energy management systems</subject><subject>Equivalent circuits</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>modeling</subject><subject>Modelling</subject><subject>Motorcycles</subject><subject>Parameter identification</subject><subject>power electronics</subject><subject>storage</subject><subject>subspace system identification</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>System identification</subject><subject>Time-domain analysis</subject><subject>Tuning</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAUhC0EEqWwI7FEYk5579lObLaqaqFSEUPLbDmOA6naJNjp0H9PqlZMt3x3J32MPSJMEEG_bOazCQHRhBNShvkVG6GUKgWQ-pqNQCmZKp3pW3YX4xYAhSQcMb0-dD4421lX921IPtrS7-rm-zWZJutj7P0-WZa-6euqdrav2yaZdl1orfu5ZzeV3UX_cMkx-1rMN7P3dPX5tpxNV6kjwj7lZJFXQnNfoFe2AFkKkXNRqVxjJQpCoFKQkpkEUB6cR-2w0IXMLQlV8TF7Pu8Ot78HH3uzbQ-hGS4N5bnKtM64Gig4Uy60MQZfmS7UexuOBsGcBJlBkDkJMhdBQ-XpXKm99_-41shzJP4H-fJfeQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Slaifstein, Dario</creator><creator>Ibanez, Federico Martin</creator><creator>Siwek, Katarzyna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1560-4942</orcidid><orcidid>https://orcid.org/0000-0001-8654-2131</orcidid></search><sort><creationdate>20230301</creationdate><title>Supercapacitor Modeling: A System Identification Approach</title><author>Slaifstein, Dario ; Ibanez, Federico Martin ; Siwek, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-32a13f493eb1e8ab05d44734f8791f4b2102d428565008e0ce19c1b9b57a248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Distributed generation</topic><topic>Electric motorcycles</topic><topic>Electric vehicles</topic><topic>Electrodes</topic><topic>Energy management systems</topic><topic>Equivalent circuits</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>modeling</topic><topic>Modelling</topic><topic>Motorcycles</topic><topic>Parameter identification</topic><topic>power electronics</topic><topic>storage</topic><topic>subspace system identification</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>System identification</topic><topic>Time-domain analysis</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slaifstein, Dario</creatorcontrib><creatorcontrib>Ibanez, Federico Martin</creatorcontrib><creatorcontrib>Siwek, Katarzyna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Slaifstein, Dario</au><au>Ibanez, Federico Martin</au><au>Siwek, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercapacitor Modeling: A System Identification Approach</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>Recently a great deal of attention has been given to supercapacitors (SC) due to their outstanding power densities and long cycling life. Their behavior has been extensively analyzed and tested through several modeling approaches. One common technique for modeling the dynamic operation of SCs is through an electrical circuit model (ECM). This article presents a new approach to identifying ECM parameters by applying subspace system identification (SSID) algorithms and incorporating coulombic efficiency. This novel application of SSID improves model accuracy by almost 50% in some cases compared to the literature procedures. This was done without manual tuning of the parameters, risk of non-convergence or any prior knowledge. The approach was validated at three different temperatures and with experimental data from an electric motorcycle. The resulting models are ready to be used as building blocks in a wide range of applications such as energy management systems, renewable power generation, electric vehicles, and microgrids.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2022.3212617</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1560-4942</orcidid><orcidid>https://orcid.org/0000-0001-8654-2131</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2023-03, Vol.38 (1), p.1-11
issn 0885-8969
1558-0059
language eng
recordid cdi_ieee_primary_9913712
source IEEE Electronic Library (IEL)
subjects Algorithms
Capacitors
Circuits
Distributed generation
Electric motorcycles
Electric vehicles
Electrodes
Energy management systems
Equivalent circuits
Integrated circuit modeling
Mathematical models
Model accuracy
modeling
Modelling
Motorcycles
Parameter identification
power electronics
storage
subspace system identification
supercapacitor
Supercapacitors
System identification
Time-domain analysis
Tuning
title Supercapacitor Modeling: A System Identification Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercapacitor%20Modeling:%20A%20System%20Identification%20Approach&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Slaifstein,%20Dario&rft.date=2023-03-01&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2022.3212617&rft_dat=%3Cproquest_RIE%3E2778699638%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778699638&rft_id=info:pmid/&rft_ieee_id=9913712&rfr_iscdi=true