Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems
Although state-feedback optimal control of the continuous-time (CT) systems has been extensively studied, resolving optimal control online via output-feedback is still challenging, especially only input-output information can be used. In this brief, we develop an innovative technique to online desig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-02, Vol.71 (2), p.652-656 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 2 |
container_start_page | 652 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 71 |
creator | Zhao, Jun Lv, Yongfeng Zeng, Qingliang Wan, Lirong |
description | Although state-feedback optimal control of the continuous-time (CT) systems has been extensively studied, resolving optimal control online via output-feedback is still challenging, especially only input-output information can be used. In this brief, we develop an innovative technique to online design the output-feedback optimal control (OFOC) of the CT systems. Firstly, to synthesis the OFOC, an output-feedback algebraic Riccati equation (OARE) is constructed, which can be solved using input-output information. Then, an online policy learning (PL) algorithm is developed to compute the solution of the OARE, where only the input-output information is required and the conventional offline learning procedure is avoided. Simulations based on an aircraft model are provided to test the developed control method and online learning algorithm. |
doi_str_mv | 10.1109/TCSII.2022.3211832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9913499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913499</ieee_id><sourcerecordid>2923124611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d322e4d41c4edf821ea02ee6a17f37665854f97d5a033ced138b47a3a4ee0f323</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxNrFHjtxvISIQqVKQWoRS8tNJigljYOdLPr3pA-xmru4Z0ZzCLnnbMY500_rbLVYzIABzARwngq4IBMexykVSvPLQ5aaKiXVNbkJYcsYaCZgQr7ytqlbjD5cUxf7aInWt3X7TV9swDLKh74bejpHLDe2-Inyrq93toky1_beNZGrjrFuBzcEuq53GK32ocdduCVXlW0C3p3nlHzOX9fZO13mb4vseUkL0HFPSwGAspS8kFhWKXC0DBATy1UlVJLEaSwrrcrYMiEKLLlIN1JZYSUiqwSIKXk87e28-x0w9GbrBt-OJw1oEBxkwvnYglOr8C4Ej5Xp_PiI3xvOzEGgOQo0B4HmLHCEHk5QjYj_gNZcSK3FH14abJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923124611</pqid></control><display><type>article</type><title>Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Jun ; Lv, Yongfeng ; Zeng, Qingliang ; Wan, Lirong</creator><creatorcontrib>Zhao, Jun ; Lv, Yongfeng ; Zeng, Qingliang ; Wan, Lirong</creatorcontrib><description>Although state-feedback optimal control of the continuous-time (CT) systems has been extensively studied, resolving optimal control online via output-feedback is still challenging, especially only input-output information can be used. In this brief, we develop an innovative technique to online design the output-feedback optimal control (OFOC) of the CT systems. Firstly, to synthesis the OFOC, an output-feedback algebraic Riccati equation (OARE) is constructed, which can be solved using input-output information. Then, an online policy learning (PL) algorithm is developed to compute the solution of the OARE, where only the input-output information is required and the conventional offline learning procedure is avoided. Simulations based on an aircraft model are provided to test the developed control method and online learning algorithm.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3211832</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft models ; Algorithms ; Atmospheric modeling ; Continuous time systems ; Control methods ; Control systems ; Convergence ; Heuristic algorithms ; Machine learning ; Mathematical models ; Observers ; Optimal control ; Output feedback ; Output-feedback control ; policy learning ; Riccati equation ; Riccati equations ; State feedback</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-02, Vol.71 (2), p.652-656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d322e4d41c4edf821ea02ee6a17f37665854f97d5a033ced138b47a3a4ee0f323</citedby><cites>FETCH-LOGICAL-c295t-d322e4d41c4edf821ea02ee6a17f37665854f97d5a033ced138b47a3a4ee0f323</cites><orcidid>0000-0002-9139-7220 ; 0000-0003-2908-2583 ; 0000-0002-3842-9107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9913499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Lv, Yongfeng</creatorcontrib><creatorcontrib>Zeng, Qingliang</creatorcontrib><creatorcontrib>Wan, Lirong</creatorcontrib><title>Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Although state-feedback optimal control of the continuous-time (CT) systems has been extensively studied, resolving optimal control online via output-feedback is still challenging, especially only input-output information can be used. In this brief, we develop an innovative technique to online design the output-feedback optimal control (OFOC) of the CT systems. Firstly, to synthesis the OFOC, an output-feedback algebraic Riccati equation (OARE) is constructed, which can be solved using input-output information. Then, an online policy learning (PL) algorithm is developed to compute the solution of the OARE, where only the input-output information is required and the conventional offline learning procedure is avoided. Simulations based on an aircraft model are provided to test the developed control method and online learning algorithm.</description><subject>Aircraft models</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Continuous time systems</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Observers</subject><subject>Optimal control</subject><subject>Output feedback</subject><subject>Output-feedback control</subject><subject>policy learning</subject><subject>Riccati equation</subject><subject>Riccati equations</subject><subject>State feedback</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxNrFHjtxvISIQqVKQWoRS8tNJigljYOdLPr3pA-xmru4Z0ZzCLnnbMY500_rbLVYzIABzARwngq4IBMexykVSvPLQ5aaKiXVNbkJYcsYaCZgQr7ytqlbjD5cUxf7aInWt3X7TV9swDLKh74bejpHLDe2-Inyrq93toky1_beNZGrjrFuBzcEuq53GK32ocdduCVXlW0C3p3nlHzOX9fZO13mb4vseUkL0HFPSwGAspS8kFhWKXC0DBATy1UlVJLEaSwrrcrYMiEKLLlIN1JZYSUiqwSIKXk87e28-x0w9GbrBt-OJw1oEBxkwvnYglOr8C4Ej5Xp_PiI3xvOzEGgOQo0B4HmLHCEHk5QjYj_gNZcSK3FH14abJs</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhao, Jun</creator><creator>Lv, Yongfeng</creator><creator>Zeng, Qingliang</creator><creator>Wan, Lirong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9139-7220</orcidid><orcidid>https://orcid.org/0000-0003-2908-2583</orcidid><orcidid>https://orcid.org/0000-0002-3842-9107</orcidid></search><sort><creationdate>20240201</creationdate><title>Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems</title><author>Zhao, Jun ; Lv, Yongfeng ; Zeng, Qingliang ; Wan, Lirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d322e4d41c4edf821ea02ee6a17f37665854f97d5a033ced138b47a3a4ee0f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft models</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Continuous time systems</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Observers</topic><topic>Optimal control</topic><topic>Output feedback</topic><topic>Output-feedback control</topic><topic>policy learning</topic><topic>Riccati equation</topic><topic>Riccati equations</topic><topic>State feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Lv, Yongfeng</creatorcontrib><creatorcontrib>Zeng, Qingliang</creatorcontrib><creatorcontrib>Wan, Lirong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Jun</au><au>Lv, Yongfeng</au><au>Zeng, Qingliang</au><au>Wan, Lirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>71</volume><issue>2</issue><spage>652</spage><epage>656</epage><pages>652-656</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Although state-feedback optimal control of the continuous-time (CT) systems has been extensively studied, resolving optimal control online via output-feedback is still challenging, especially only input-output information can be used. In this brief, we develop an innovative technique to online design the output-feedback optimal control (OFOC) of the CT systems. Firstly, to synthesis the OFOC, an output-feedback algebraic Riccati equation (OARE) is constructed, which can be solved using input-output information. Then, an online policy learning (PL) algorithm is developed to compute the solution of the OARE, where only the input-output information is required and the conventional offline learning procedure is avoided. Simulations based on an aircraft model are provided to test the developed control method and online learning algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3211832</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9139-7220</orcidid><orcidid>https://orcid.org/0000-0003-2908-2583</orcidid><orcidid>https://orcid.org/0000-0002-3842-9107</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2024-02, Vol.71 (2), p.652-656 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_9913499 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft models Algorithms Atmospheric modeling Continuous time systems Control methods Control systems Convergence Heuristic algorithms Machine learning Mathematical models Observers Optimal control Output feedback Output-feedback control policy learning Riccati equation Riccati equations State feedback |
title | Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Policy%20Learning-Based%20Output-Feedback%20Optimal%20Control%20of%20Continuous-Time%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Zhao,%20Jun&rft.date=2024-02-01&rft.volume=71&rft.issue=2&rft.spage=652&rft.epage=656&rft.pages=652-656&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3211832&rft_dat=%3Cproquest_RIE%3E2923124611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923124611&rft_id=info:pmid/&rft_ieee_id=9913499&rfr_iscdi=true |