A Dopamine Based Adaptive Emotional Neural Network

Due to the inevitable role of emotions in human learning and decision-making, different types of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks. Emotional neural networks suffer from a low convergence rate as well as batch learning instability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Zare, Mohammad Amin, Boostani, Reza, Mohammadi, Mokhtar, Kouchaki, Samaneh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Zare, Mohammad Amin
Boostani, Reza
Mohammadi, Mokhtar
Kouchaki, Samaneh
description Due to the inevitable role of emotions in human learning and decision-making, different types of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks. Emotional neural networks suffer from a low convergence rate as well as batch learning instability mainly because of the improper tuning of learning coefficients. To overcome these drawbacks, we introduced two solutions: (i) a heuristic upgrading method, inspiring by the behavior of dopamine secretion in the human brain, to adaptively regulate the learning rate based on positive and negative emotional states at each epoch and (ii) a stochastic learning technique to stabilize the learning process. The proposed dopamine based adaptive emotional neural network statistically outperforms state-of-the-art methods like emotional neural network, prototype-incorporated emotional neural network, multi-layer perceptron, and deep convolutional neural networks such as LeNet, AlexNet, DenseNet, MobileNet and EfficientNet in terms of different measures such as accuracy and convergence rate on several high dimensional and big datasets.
doi_str_mv 10.1109/ACCESS.2022.3212403
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9912401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9912401</ieee_id><doaj_id>oai_doaj_org_article_9e80fe112cd64ed286acd035b93de89c</doaj_id><sourcerecordid>2726115233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-87501dd1e4f6d27a42f1d0a992c919dd896b89f2f6201e611a4d37e772c813de3</originalsourceid><addsrcrecordid>eNpNUMFOwzAMjRBITGNfsEslzh2x06bNsYwBkyY4DM5RlrioY1tK2oH4e7p1mvDlWc9-z_JjbAx8AsDVXTGdzpbLCXLEiUDAhIsLNkCQKhapkJf_-ms2apo17yrvqDQbMCyiB1-bbbWj6N405KLCmbqtvimabX1b-Z3ZRC-0D0dof3z4vGFXpdk0NDrhkL0_zt6mz_Hi9Wk-LRaxFVK0cZ6lHJwDSkrpMDMJluC4UQqtAuVcruQqVyWWEjmQBDCJExllGdochCMxZPPe13mz1nWotib8am8qfSR8-NAmtJXdkFaU85IA0DqZkMNcGuu4SFeqM8qV7bxue686-K89Na1e-33ofms0ZtgdT1GIbkv0Wzb4pglUnq8C14esdZ-1PmStT1l3qnGvqojorFDqMAXxB7pHd_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726115233</pqid></control><display><type>article</type><title>A Dopamine Based Adaptive Emotional Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zare, Mohammad Amin ; Boostani, Reza ; Mohammadi, Mokhtar ; Kouchaki, Samaneh</creator><creatorcontrib>Zare, Mohammad Amin ; Boostani, Reza ; Mohammadi, Mokhtar ; Kouchaki, Samaneh</creatorcontrib><description>Due to the inevitable role of emotions in human learning and decision-making, different types of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks. Emotional neural networks suffer from a low convergence rate as well as batch learning instability mainly because of the improper tuning of learning coefficients. To overcome these drawbacks, we introduced two solutions: (i) a heuristic upgrading method, inspiring by the behavior of dopamine secretion in the human brain, to adaptively regulate the learning rate based on positive and negative emotional states at each epoch and (ii) a stochastic learning technique to stabilize the learning process. The proposed dopamine based adaptive emotional neural network statistically outperforms state-of-the-art methods like emotional neural network, prototype-incorporated emotional neural network, multi-layer perceptron, and deep convolutional neural networks such as LeNet, AlexNet, DenseNet, MobileNet and EfficientNet in terms of different measures such as accuracy and convergence rate on several high dimensional and big datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3212403</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive learning rate ; Adaptive systems ; Anxiety disorders ; Artificial neural networks ; Behavioral sciences ; Biological neural networks ; Convergence ; Decision making ; Dopamine ; dopamine behavior ; Emotion recognition ; Emotional factors ; emotional neural network ; Emotions ; Fluctuations ; Heuristic methods ; Human factors ; Learning ; Learning (artificial intelligence) ; Multilayer perceptrons ; Multilayers ; Neural networks ; shallow neural network</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-87501dd1e4f6d27a42f1d0a992c919dd896b89f2f6201e611a4d37e772c813de3</citedby><cites>FETCH-LOGICAL-c363t-87501dd1e4f6d27a42f1d0a992c919dd896b89f2f6201e611a4d37e772c813de3</cites><orcidid>0000-0003-0055-4452 ; 0000-0002-1393-5062 ; 0000-0002-5870-4030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9912401$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Zare, Mohammad Amin</creatorcontrib><creatorcontrib>Boostani, Reza</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Kouchaki, Samaneh</creatorcontrib><title>A Dopamine Based Adaptive Emotional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the inevitable role of emotions in human learning and decision-making, different types of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks. Emotional neural networks suffer from a low convergence rate as well as batch learning instability mainly because of the improper tuning of learning coefficients. To overcome these drawbacks, we introduced two solutions: (i) a heuristic upgrading method, inspiring by the behavior of dopamine secretion in the human brain, to adaptively regulate the learning rate based on positive and negative emotional states at each epoch and (ii) a stochastic learning technique to stabilize the learning process. The proposed dopamine based adaptive emotional neural network statistically outperforms state-of-the-art methods like emotional neural network, prototype-incorporated emotional neural network, multi-layer perceptron, and deep convolutional neural networks such as LeNet, AlexNet, DenseNet, MobileNet and EfficientNet in terms of different measures such as accuracy and convergence rate on several high dimensional and big datasets.</description><subject>Adaptive learning rate</subject><subject>Adaptive systems</subject><subject>Anxiety disorders</subject><subject>Artificial neural networks</subject><subject>Behavioral sciences</subject><subject>Biological neural networks</subject><subject>Convergence</subject><subject>Decision making</subject><subject>Dopamine</subject><subject>dopamine behavior</subject><subject>Emotion recognition</subject><subject>Emotional factors</subject><subject>emotional neural network</subject><subject>Emotions</subject><subject>Fluctuations</subject><subject>Heuristic methods</subject><subject>Human factors</subject><subject>Learning</subject><subject>Learning (artificial intelligence)</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>shallow neural network</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOwzAMjRBITGNfsEslzh2x06bNsYwBkyY4DM5RlrioY1tK2oH4e7p1mvDlWc9-z_JjbAx8AsDVXTGdzpbLCXLEiUDAhIsLNkCQKhapkJf_-ms2apo17yrvqDQbMCyiB1-bbbWj6N405KLCmbqtvimabX1b-Z3ZRC-0D0dof3z4vGFXpdk0NDrhkL0_zt6mz_Hi9Wk-LRaxFVK0cZ6lHJwDSkrpMDMJluC4UQqtAuVcruQqVyWWEjmQBDCJExllGdochCMxZPPe13mz1nWotib8am8qfSR8-NAmtJXdkFaU85IA0DqZkMNcGuu4SFeqM8qV7bxue686-K89Na1e-33ofms0ZtgdT1GIbkv0Wzb4pglUnq8C14esdZ-1PmStT1l3qnGvqojorFDqMAXxB7pHd_g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zare, Mohammad Amin</creator><creator>Boostani, Reza</creator><creator>Mohammadi, Mokhtar</creator><creator>Kouchaki, Samaneh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0055-4452</orcidid><orcidid>https://orcid.org/0000-0002-1393-5062</orcidid><orcidid>https://orcid.org/0000-0002-5870-4030</orcidid></search><sort><creationdate>2022</creationdate><title>A Dopamine Based Adaptive Emotional Neural Network</title><author>Zare, Mohammad Amin ; Boostani, Reza ; Mohammadi, Mokhtar ; Kouchaki, Samaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-87501dd1e4f6d27a42f1d0a992c919dd896b89f2f6201e611a4d37e772c813de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive learning rate</topic><topic>Adaptive systems</topic><topic>Anxiety disorders</topic><topic>Artificial neural networks</topic><topic>Behavioral sciences</topic><topic>Biological neural networks</topic><topic>Convergence</topic><topic>Decision making</topic><topic>Dopamine</topic><topic>dopamine behavior</topic><topic>Emotion recognition</topic><topic>Emotional factors</topic><topic>emotional neural network</topic><topic>Emotions</topic><topic>Fluctuations</topic><topic>Heuristic methods</topic><topic>Human factors</topic><topic>Learning</topic><topic>Learning (artificial intelligence)</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>shallow neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zare, Mohammad Amin</creatorcontrib><creatorcontrib>Boostani, Reza</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Kouchaki, Samaneh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zare, Mohammad Amin</au><au>Boostani, Reza</au><au>Mohammadi, Mokhtar</au><au>Kouchaki, Samaneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dopamine Based Adaptive Emotional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the inevitable role of emotions in human learning and decision-making, different types of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks. Emotional neural networks suffer from a low convergence rate as well as batch learning instability mainly because of the improper tuning of learning coefficients. To overcome these drawbacks, we introduced two solutions: (i) a heuristic upgrading method, inspiring by the behavior of dopamine secretion in the human brain, to adaptively regulate the learning rate based on positive and negative emotional states at each epoch and (ii) a stochastic learning technique to stabilize the learning process. The proposed dopamine based adaptive emotional neural network statistically outperforms state-of-the-art methods like emotional neural network, prototype-incorporated emotional neural network, multi-layer perceptron, and deep convolutional neural networks such as LeNet, AlexNet, DenseNet, MobileNet and EfficientNet in terms of different measures such as accuracy and convergence rate on several high dimensional and big datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3212403</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0055-4452</orcidid><orcidid>https://orcid.org/0000-0002-1393-5062</orcidid><orcidid>https://orcid.org/0000-0002-5870-4030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9912401
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive learning rate
Adaptive systems
Anxiety disorders
Artificial neural networks
Behavioral sciences
Biological neural networks
Convergence
Decision making
Dopamine
dopamine behavior
Emotion recognition
Emotional factors
emotional neural network
Emotions
Fluctuations
Heuristic methods
Human factors
Learning
Learning (artificial intelligence)
Multilayer perceptrons
Multilayers
Neural networks
shallow neural network
title A Dopamine Based Adaptive Emotional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dopamine%20Based%20Adaptive%20Emotional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Zare,%20Mohammad%20Amin&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3212403&rft_dat=%3Cproquest_ieee_%3E2726115233%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726115233&rft_id=info:pmid/&rft_ieee_id=9912401&rft_doaj_id=oai_doaj_org_article_9e80fe112cd64ed286acd035b93de89c&rfr_iscdi=true