SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing

Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works has explored protecting the confidentiality of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2023-07, Vol.11 (3), p.2473-2490
Hauptverfasser: Duy, Kha Dinh, Lee, Hojoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2490
container_issue 3
container_start_page 2473
container_title IEEE transactions on cloud computing
container_volume 11
creator Duy, Kha Dinh
Lee, Hojoon
description Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works has explored protecting the confidentiality of the in-cloud computation in the context of hardware-based secure enclaves. However, the approach has faced challenges in achieving efficient large data computation. In this article, we present a novel design, called se-pim , that retrofits Processing-In-Memory (PIM) as a data-intensive confidential computing accelerator. PIM-accelerated computation renders large data computation highly efficient by minimizing data movement. Based on our observation that moving computation closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the advantages of confidential computing inside memory. We construct our findings into a software-hardware co-design called se-pim . Our design illustrates the advantages of PIM-based confidential computing acceleration. We study the challenges in adapting PIM in confidential computing and propose a set of imperative changes, as well as a programming model that can utilize them. Our evaluation shows se-pim can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible performance overhead compared to the baseline PIM model.
doi_str_mv 10.1109/TCC.2022.3207145
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9906059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9906059</ieee_id><sourcerecordid>2861460032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-710b012ab9e01111b0677ec104163741431e695d6d5a63ceca9179082abdeee63</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsNTeBS8Bz6kzu8lu1luJtQZaFKznZZtMJKXd1E0i9N-7pcW5zAy8N2_4GLtHmCKCflrn-ZQD51PBQWGSXrERF4rHAJhdhxllFiuUeMsmXbeFUFmKGvWILT7n8Uexeo4KF69o3_pjNCtL2pG3fdO6qK2jF9vbuHA9ua75pShvXd1U5PrG7sKyPwx9477v2E1tdx1NLn3Mvl7n6_wtXr4viny2jEueyT48ARtAbjeaAENtQCpFJUKCUqgEE4EkdVrJKrVSlFRajUpDFhwVEUkxZo_nuwff_gzU9WbbDt6FSBMCMJEAggcVnFWlb7vOU20OvtlbfzQI5kTMBGLmRMxciAXLw9nShJx_udYgIdXiD-gjZC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861460032</pqid></control><display><type>article</type><title>SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Duy, Kha Dinh ; Lee, Hojoon</creator><creatorcontrib>Duy, Kha Dinh ; Lee, Hojoon</creatorcontrib><description>Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works has explored protecting the confidentiality of the in-cloud computation in the context of hardware-based secure enclaves. However, the approach has faced challenges in achieving efficient large data computation. In this article, we present a novel design, called se-pim , that retrofits Processing-In-Memory (PIM) as a data-intensive confidential computing accelerator. PIM-accelerated computation renders large data computation highly efficient by minimizing data movement. Based on our observation that moving computation closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the advantages of confidential computing inside memory. We construct our findings into a software-hardware co-design called se-pim . Our design illustrates the advantages of PIM-based confidential computing acceleration. We study the challenges in adapting PIM in confidential computing and propose a set of imperative changes, as well as a programming model that can utilize them. Our evaluation shows se-pim can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible performance overhead compared to the baseline PIM model.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2022.3207145</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Co-design ; Computation offloading ; Computational efficiency ; Computational modeling ; Computer architecture ; Computer memory ; confidential computing ; Confidentiality ; Hardware ; Memory management ; Movement ; Processor-in-memory ; Random access memory ; Retrofitting</subject><ispartof>IEEE transactions on cloud computing, 2023-07, Vol.11 (3), p.2473-2490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-710b012ab9e01111b0677ec104163741431e695d6d5a63ceca9179082abdeee63</cites><orcidid>0000-0001-5344-6266 ; 0000-0002-6285-3506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9906059$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids></links><search><creatorcontrib>Duy, Kha Dinh</creatorcontrib><creatorcontrib>Lee, Hojoon</creatorcontrib><title>SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works has explored protecting the confidentiality of the in-cloud computation in the context of hardware-based secure enclaves. However, the approach has faced challenges in achieving efficient large data computation. In this article, we present a novel design, called se-pim , that retrofits Processing-In-Memory (PIM) as a data-intensive confidential computing accelerator. PIM-accelerated computation renders large data computation highly efficient by minimizing data movement. Based on our observation that moving computation closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the advantages of confidential computing inside memory. We construct our findings into a software-hardware co-design called se-pim . Our design illustrates the advantages of PIM-based confidential computing acceleration. We study the challenges in adapting PIM in confidential computing and propose a set of imperative changes, as well as a programming model that can utilize them. Our evaluation shows se-pim can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible performance overhead compared to the baseline PIM model.</description><subject>Cloud computing</subject><subject>Co-design</subject><subject>Computation offloading</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer memory</subject><subject>confidential computing</subject><subject>Confidentiality</subject><subject>Hardware</subject><subject>Memory management</subject><subject>Movement</subject><subject>Processor-in-memory</subject><subject>Random access memory</subject><subject>Retrofitting</subject><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsNTeBS8Bz6kzu8lu1luJtQZaFKznZZtMJKXd1E0i9N-7pcW5zAy8N2_4GLtHmCKCflrn-ZQD51PBQWGSXrERF4rHAJhdhxllFiuUeMsmXbeFUFmKGvWILT7n8Uexeo4KF69o3_pjNCtL2pG3fdO6qK2jF9vbuHA9ua75pShvXd1U5PrG7sKyPwx9477v2E1tdx1NLn3Mvl7n6_wtXr4viny2jEueyT48ARtAbjeaAENtQCpFJUKCUqgEE4EkdVrJKrVSlFRajUpDFhwVEUkxZo_nuwff_gzU9WbbDt6FSBMCMJEAggcVnFWlb7vOU20OvtlbfzQI5kTMBGLmRMxciAXLw9nShJx_udYgIdXiD-gjZC0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Duy, Kha Dinh</creator><creator>Lee, Hojoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5344-6266</orcidid><orcidid>https://orcid.org/0000-0002-6285-3506</orcidid></search><sort><creationdate>20230701</creationdate><title>SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing</title><author>Duy, Kha Dinh ; Lee, Hojoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-710b012ab9e01111b0677ec104163741431e695d6d5a63ceca9179082abdeee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Co-design</topic><topic>Computation offloading</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer memory</topic><topic>confidential computing</topic><topic>Confidentiality</topic><topic>Hardware</topic><topic>Memory management</topic><topic>Movement</topic><topic>Processor-in-memory</topic><topic>Random access memory</topic><topic>Retrofitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duy, Kha Dinh</creatorcontrib><creatorcontrib>Lee, Hojoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duy, Kha Dinh</au><au>Lee, Hojoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>2473</spage><epage>2490</epage><pages>2473-2490</pages><issn>2168-7161</issn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works has explored protecting the confidentiality of the in-cloud computation in the context of hardware-based secure enclaves. However, the approach has faced challenges in achieving efficient large data computation. In this article, we present a novel design, called se-pim , that retrofits Processing-In-Memory (PIM) as a data-intensive confidential computing accelerator. PIM-accelerated computation renders large data computation highly efficient by minimizing data movement. Based on our observation that moving computation closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the advantages of confidential computing inside memory. We construct our findings into a software-hardware co-design called se-pim . Our design illustrates the advantages of PIM-based confidential computing acceleration. We study the challenges in adapting PIM in confidential computing and propose a set of imperative changes, as well as a programming model that can utilize them. Our evaluation shows se-pim can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible performance overhead compared to the baseline PIM model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2022.3207145</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5344-6266</orcidid><orcidid>https://orcid.org/0000-0002-6285-3506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2023-07, Vol.11 (3), p.2473-2490
issn 2168-7161
2372-0018
language eng
recordid cdi_ieee_primary_9906059
source IEEE Electronic Library (IEL)
subjects Cloud computing
Co-design
Computation offloading
Computational efficiency
Computational modeling
Computer architecture
Computer memory
confidential computing
Confidentiality
Hardware
Memory management
Movement
Processor-in-memory
Random access memory
Retrofitting
title SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SE-PIM:%20In-Memory%20Acceleration%20of%20Data-Intensive%20Confidential%20Computing&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Duy,%20Kha%20Dinh&rft.date=2023-07-01&rft.volume=11&rft.issue=3&rft.spage=2473&rft.epage=2490&rft.pages=2473-2490&rft.issn=2168-7161&rft.eissn=2372-0018&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2022.3207145&rft_dat=%3Cproquest_ieee_%3E2861460032%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861460032&rft_id=info:pmid/&rft_ieee_id=9906059&rfr_iscdi=true