Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators
This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2023-03, Vol.31 (2), p.841-855 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 855 |
---|---|
container_issue | 2 |
container_start_page | 841 |
container_title | IEEE transactions on control systems technology |
container_volume | 31 |
creator | Kofler, Sandro Luchini, Elisabeth Schirrer, Alexander Fallmann, Markus Konig, Oliver Kozek, Martin Hametner, Christoph Jakubek, Stefan |
description | This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail. |
doi_str_mv | 10.1109/TCST.2022.3207354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9905751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905751</ieee_id><sourcerecordid>2779663827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYZR1fhRYLVlyGTJLRKbFTk4ygv96UFlfnHu4598IHwCVGE4xRdbOqX1YTggiZUIIEZeURGGHGZIEkZ8d5RpwWnFF-Cs5iXCOES0bECKjpu9uk4lZHZ-GdM9kE7bvf7Ba9dR4ug7OdSd23g3Wfl72HbR_g0utNivCtSx9wMfjUbb2DM5vrndEeTk0adOpDPAcnrfbRXRx0DF4f7lf1UzF_fpzV03lhCOepsFrTFlsmcFaCW1EZUtlW8qbR3BCsLS5xZbU0JRGOcNmaRjRaSqwro62jY3C9v7sN_dfgYlLrfgib_FIRISrOqSQip_A-ZUIfY3Ct2obuU4cfhZHacVQ7jmrHUR045s7VvtM55_7zVYWYYJj-AUWscEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779663827</pqid></control><display><type>article</type><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</creator><creatorcontrib>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</creatorcontrib><description>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2022.3207354</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Control stability ; Control systems ; Decentralized control ; Dynamical systems ; Emulators ; Linear programming ; Manganese ; Modularity ; Optimization ; power electronics ; Predictive control ; predictive control for linear systems ; Predictive models ; Stability analysis ; Stability criteria ; Subsystems ; Systems design</subject><ispartof>IEEE transactions on control systems technology, 2023-03, Vol.31 (2), p.841-855</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</citedby><cites>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</cites><orcidid>0000-0003-2912-4771 ; 0000-0003-0331-0947 ; 0000-0001-6037-2699 ; 0000-0002-0306-2253 ; 0000-0002-5811-0857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905751$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Kofler, Sandro</creatorcontrib><creatorcontrib>Luchini, Elisabeth</creatorcontrib><creatorcontrib>Schirrer, Alexander</creatorcontrib><creatorcontrib>Fallmann, Markus</creatorcontrib><creatorcontrib>Konig, Oliver</creatorcontrib><creatorcontrib>Kozek, Martin</creatorcontrib><creatorcontrib>Hametner, Christoph</creatorcontrib><creatorcontrib>Jakubek, Stefan</creatorcontrib><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Decentralized control</subject><subject>Dynamical systems</subject><subject>Emulators</subject><subject>Linear programming</subject><subject>Manganese</subject><subject>Modularity</subject><subject>Optimization</subject><subject>power electronics</subject><subject>Predictive control</subject><subject>predictive control for linear systems</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Subsystems</subject><subject>Systems design</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYZR1fhRYLVlyGTJLRKbFTk4ygv96UFlfnHu4598IHwCVGE4xRdbOqX1YTggiZUIIEZeURGGHGZIEkZ8d5RpwWnFF-Cs5iXCOES0bECKjpu9uk4lZHZ-GdM9kE7bvf7Ba9dR4ug7OdSd23g3Wfl72HbR_g0utNivCtSx9wMfjUbb2DM5vrndEeTk0adOpDPAcnrfbRXRx0DF4f7lf1UzF_fpzV03lhCOepsFrTFlsmcFaCW1EZUtlW8qbR3BCsLS5xZbU0JRGOcNmaRjRaSqwro62jY3C9v7sN_dfgYlLrfgib_FIRISrOqSQip_A-ZUIfY3Ct2obuU4cfhZHacVQ7jmrHUR045s7VvtM55_7zVYWYYJj-AUWscEg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kofler, Sandro</creator><creator>Luchini, Elisabeth</creator><creator>Schirrer, Alexander</creator><creator>Fallmann, Markus</creator><creator>Konig, Oliver</creator><creator>Kozek, Martin</creator><creator>Hametner, Christoph</creator><creator>Jakubek, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2912-4771</orcidid><orcidid>https://orcid.org/0000-0003-0331-0947</orcidid><orcidid>https://orcid.org/0000-0001-6037-2699</orcidid><orcidid>https://orcid.org/0000-0002-0306-2253</orcidid><orcidid>https://orcid.org/0000-0002-5811-0857</orcidid></search><sort><creationdate>202303</creationdate><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><author>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Decentralized control</topic><topic>Dynamical systems</topic><topic>Emulators</topic><topic>Linear programming</topic><topic>Manganese</topic><topic>Modularity</topic><topic>Optimization</topic><topic>power electronics</topic><topic>Predictive control</topic><topic>predictive control for linear systems</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Subsystems</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kofler, Sandro</creatorcontrib><creatorcontrib>Luchini, Elisabeth</creatorcontrib><creatorcontrib>Schirrer, Alexander</creatorcontrib><creatorcontrib>Fallmann, Markus</creatorcontrib><creatorcontrib>Konig, Oliver</creatorcontrib><creatorcontrib>Kozek, Martin</creatorcontrib><creatorcontrib>Hametner, Christoph</creatorcontrib><creatorcontrib>Jakubek, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofler, Sandro</au><au>Luchini, Elisabeth</au><au>Schirrer, Alexander</au><au>Fallmann, Markus</au><au>Konig, Oliver</au><au>Kozek, Martin</au><au>Hametner, Christoph</au><au>Jakubek, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-03</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><spage>841</spage><epage>855</epage><pages>841-855</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2022.3207354</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2912-4771</orcidid><orcidid>https://orcid.org/0000-0003-0331-0947</orcidid><orcidid>https://orcid.org/0000-0001-6037-2699</orcidid><orcidid>https://orcid.org/0000-0002-0306-2253</orcidid><orcidid>https://orcid.org/0000-0002-5811-0857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2023-03, Vol.31 (2), p.841-855 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_9905751 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Algorithms Control stability Control systems Decentralized control Dynamical systems Emulators Linear programming Manganese Modularity Optimization power electronics Predictive control predictive control for linear systems Predictive models Stability analysis Stability criteria Subsystems Systems design |
title | Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-Based%20Decentralized%20Model%20Predictive%20Control%20for%20Plants%20With%20Multiple%20Identical%20Actuators&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Kofler,%20Sandro&rft.date=2023-03&rft.volume=31&rft.issue=2&rft.spage=841&rft.epage=855&rft.pages=841-855&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2022.3207354&rft_dat=%3Cproquest_ieee_%3E2779663827%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779663827&rft_id=info:pmid/&rft_ieee_id=9905751&rfr_iscdi=true |