Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators

This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2023-03, Vol.31 (2), p.841-855
Hauptverfasser: Kofler, Sandro, Luchini, Elisabeth, Schirrer, Alexander, Fallmann, Markus, Konig, Oliver, Kozek, Martin, Hametner, Christoph, Jakubek, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 2
container_start_page 841
container_title IEEE transactions on control systems technology
container_volume 31
creator Kofler, Sandro
Luchini, Elisabeth
Schirrer, Alexander
Fallmann, Markus
Konig, Oliver
Kozek, Martin
Hametner, Christoph
Jakubek, Stefan
description This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.
doi_str_mv 10.1109/TCST.2022.3207354
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9905751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905751</ieee_id><sourcerecordid>2779663827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYZR1fhRYLVlyGTJLRKbFTk4ygv96UFlfnHu4598IHwCVGE4xRdbOqX1YTggiZUIIEZeURGGHGZIEkZ8d5RpwWnFF-Cs5iXCOES0bECKjpu9uk4lZHZ-GdM9kE7bvf7Ba9dR4ug7OdSd23g3Wfl72HbR_g0utNivCtSx9wMfjUbb2DM5vrndEeTk0adOpDPAcnrfbRXRx0DF4f7lf1UzF_fpzV03lhCOepsFrTFlsmcFaCW1EZUtlW8qbR3BCsLS5xZbU0JRGOcNmaRjRaSqwro62jY3C9v7sN_dfgYlLrfgib_FIRISrOqSQip_A-ZUIfY3Ct2obuU4cfhZHacVQ7jmrHUR045s7VvtM55_7zVYWYYJj-AUWscEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779663827</pqid></control><display><type>article</type><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</creator><creatorcontrib>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</creatorcontrib><description>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2022.3207354</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Control stability ; Control systems ; Decentralized control ; Dynamical systems ; Emulators ; Linear programming ; Manganese ; Modularity ; Optimization ; power electronics ; Predictive control ; predictive control for linear systems ; Predictive models ; Stability analysis ; Stability criteria ; Subsystems ; Systems design</subject><ispartof>IEEE transactions on control systems technology, 2023-03, Vol.31 (2), p.841-855</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</citedby><cites>FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</cites><orcidid>0000-0003-2912-4771 ; 0000-0003-0331-0947 ; 0000-0001-6037-2699 ; 0000-0002-0306-2253 ; 0000-0002-5811-0857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905751$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Kofler, Sandro</creatorcontrib><creatorcontrib>Luchini, Elisabeth</creatorcontrib><creatorcontrib>Schirrer, Alexander</creatorcontrib><creatorcontrib>Fallmann, Markus</creatorcontrib><creatorcontrib>Konig, Oliver</creatorcontrib><creatorcontrib>Kozek, Martin</creatorcontrib><creatorcontrib>Hametner, Christoph</creatorcontrib><creatorcontrib>Jakubek, Stefan</creatorcontrib><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Decentralized control</subject><subject>Dynamical systems</subject><subject>Emulators</subject><subject>Linear programming</subject><subject>Manganese</subject><subject>Modularity</subject><subject>Optimization</subject><subject>power electronics</subject><subject>Predictive control</subject><subject>predictive control for linear systems</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Subsystems</subject><subject>Systems design</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYZR1fhRYLVlyGTJLRKbFTk4ygv96UFlfnHu4598IHwCVGE4xRdbOqX1YTggiZUIIEZeURGGHGZIEkZ8d5RpwWnFF-Cs5iXCOES0bECKjpu9uk4lZHZ-GdM9kE7bvf7Ba9dR4ug7OdSd23g3Wfl72HbR_g0utNivCtSx9wMfjUbb2DM5vrndEeTk0adOpDPAcnrfbRXRx0DF4f7lf1UzF_fpzV03lhCOepsFrTFlsmcFaCW1EZUtlW8qbR3BCsLS5xZbU0JRGOcNmaRjRaSqwro62jY3C9v7sN_dfgYlLrfgib_FIRISrOqSQip_A-ZUIfY3Ct2obuU4cfhZHacVQ7jmrHUR045s7VvtM55_7zVYWYYJj-AUWscEg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kofler, Sandro</creator><creator>Luchini, Elisabeth</creator><creator>Schirrer, Alexander</creator><creator>Fallmann, Markus</creator><creator>Konig, Oliver</creator><creator>Kozek, Martin</creator><creator>Hametner, Christoph</creator><creator>Jakubek, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2912-4771</orcidid><orcidid>https://orcid.org/0000-0003-0331-0947</orcidid><orcidid>https://orcid.org/0000-0001-6037-2699</orcidid><orcidid>https://orcid.org/0000-0002-0306-2253</orcidid><orcidid>https://orcid.org/0000-0002-5811-0857</orcidid></search><sort><creationdate>202303</creationdate><title>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</title><author>Kofler, Sandro ; Luchini, Elisabeth ; Schirrer, Alexander ; Fallmann, Markus ; Konig, Oliver ; Kozek, Martin ; Hametner, Christoph ; Jakubek, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-daa3f1d571a3f21f79c29df86bba6c21ad1419da8c427e268fcb7ba881a9cade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Decentralized control</topic><topic>Dynamical systems</topic><topic>Emulators</topic><topic>Linear programming</topic><topic>Manganese</topic><topic>Modularity</topic><topic>Optimization</topic><topic>power electronics</topic><topic>Predictive control</topic><topic>predictive control for linear systems</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Subsystems</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kofler, Sandro</creatorcontrib><creatorcontrib>Luchini, Elisabeth</creatorcontrib><creatorcontrib>Schirrer, Alexander</creatorcontrib><creatorcontrib>Fallmann, Markus</creatorcontrib><creatorcontrib>Konig, Oliver</creatorcontrib><creatorcontrib>Kozek, Martin</creatorcontrib><creatorcontrib>Hametner, Christoph</creatorcontrib><creatorcontrib>Jakubek, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofler, Sandro</au><au>Luchini, Elisabeth</au><au>Schirrer, Alexander</au><au>Fallmann, Markus</au><au>Konig, Oliver</au><au>Kozek, Martin</au><au>Hametner, Christoph</au><au>Jakubek, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-03</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><spage>841</spage><epage>855</epage><pages>841-855</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This article proposes a decentralized model predictive control (DMPC) algorithm without communication for systems consisting of multiple identical, independent actuators acting on a single central plant. The particular system design is relevant for applications where modularity is paramount and for highly dynamic systems, e.g., battery emulator systems controlled by multiple dc-dc converter modules. Each agent, consisting of an actuator and a DMPC, controls a virtually scaled version of the plant to implicitly consider the effects of other agents. The set of DMPCs achieves the same plant performance as a corresponding centralized model predictive controller (CMPC) in unconstrained operation. Also, the states of the independent agents converge toward the globally optimal CMPC solution. This is obtained by dividing the CMPC's objective function into local objective functions related to the subsystems. The optimality and stability of the DMPC in unconstrained operation are shown analytically. The stability of control input-constrained operation is analyzed by computing the region of attraction. Numerical studies of a battery emulator system compare the performance of the DMPC with the global optimum in detail.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2022.3207354</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2912-4771</orcidid><orcidid>https://orcid.org/0000-0003-0331-0947</orcidid><orcidid>https://orcid.org/0000-0001-6037-2699</orcidid><orcidid>https://orcid.org/0000-0002-0306-2253</orcidid><orcidid>https://orcid.org/0000-0002-5811-0857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2023-03, Vol.31 (2), p.841-855
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_9905751
source IEEE Electronic Library (IEL)
subjects Actuators
Algorithms
Control stability
Control systems
Decentralized control
Dynamical systems
Emulators
Linear programming
Manganese
Modularity
Optimization
power electronics
Predictive control
predictive control for linear systems
Predictive models
Stability analysis
Stability criteria
Subsystems
Systems design
title Agent-Based Decentralized Model Predictive Control for Plants With Multiple Identical Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-Based%20Decentralized%20Model%20Predictive%20Control%20for%20Plants%20With%20Multiple%20Identical%20Actuators&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Kofler,%20Sandro&rft.date=2023-03&rft.volume=31&rft.issue=2&rft.spage=841&rft.epage=855&rft.pages=841-855&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2022.3207354&rft_dat=%3Cproquest_ieee_%3E2779663827%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779663827&rft_id=info:pmid/&rft_ieee_id=9905751&rfr_iscdi=true