Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network

With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.103136-103149
Hauptverfasser: Yao, Chengpeng, Yang, Yu, Yin, Kun, Yang, Jinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103149
container_issue
container_start_page 103136
container_title IEEE access
container_volume 10
creator Yao, Chengpeng
Yang, Yu
Yin, Kun
Yang, Jinwei
description With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.
doi_str_mv 10.1109/ACCESS.2022.3210189
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903592</ieee_id><doaj_id>oai_doaj_org_article_867388fbdc87471f84b163a456965ecb</doaj_id><sourcerecordid>2721429412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1pISHNJ8hF0PNu9d_SceumTSAkgU3JUcjyqGjrlVzJ25JTv3qUeAmdywyj935ieE1zQfCaEKw_b7rucrtdU0zpmlGCidLvmlNKpF4xweT7_-aT5ryUHa6l6kq0p82_h2y9Dw5tYtrb8Ql9hRncHFJEIaLHkGGEUtAWYkkZ3cL8N-VfBX2xBQZURfc5RBcmO6Iu7acUIc4VVUElFGTjUHkw1bf4J42HV-wtHHKVH1Efmw_ejgXOj_2s-fHt8qG7Wt3cfb_uNjcrx7GaV1QAEcQLh7lvW658OzAs5MB76nulHQalRS_rKU7VNgwe91wy6cFjSZliZ831wh2S3Zkph73NTybZYF4XKf80Ns_BjWCUbJlSvh-canlLvOI9kcxyIbUU4PrK-rSwppx-H6DMZpcOuR5dDG0p4VRzQquKLSqXUykZ_NuvBJuX4MwSnHkJzhyDq66LxRUA4M2hNWZCU_YMp0yVag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429412</pqid></control><display><type>article</type><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</creator><creatorcontrib>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</creatorcontrib><description>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3210189</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Artificial neural networks ; Classification ; Convolutional neural networks ; deep convolution neural network ; denial of service ; Denial of service attacks ; Feature extraction ; Machine learning ; network attack ; Neural networks ; Principal component analysis ; Principal components analysis ; Representation learning ; Storage capacity ; Telecommunication traffic ; Traffic capacity ; Traffic models ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE access, 2022, Vol.10, p.103136-103149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</citedby><cites>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</cites><orcidid>0000-0002-5882-0322 ; 0000-0003-3308-3941 ; 0000-0003-4526-0239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903592$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yao, Chengpeng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yin, Kun</creatorcontrib><creatorcontrib>Yang, Jinwei</creatorcontrib><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>deep convolution neural network</subject><subject>denial of service</subject><subject>Denial of service attacks</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>network attack</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Representation learning</subject><subject>Storage capacity</subject><subject>Telecommunication traffic</subject><subject>Traffic capacity</subject><subject>Traffic models</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1pISHNJ8hF0PNu9d_SceumTSAkgU3JUcjyqGjrlVzJ25JTv3qUeAmdywyj935ieE1zQfCaEKw_b7rucrtdU0zpmlGCidLvmlNKpF4xweT7_-aT5ryUHa6l6kq0p82_h2y9Dw5tYtrb8Ql9hRncHFJEIaLHkGGEUtAWYkkZ3cL8N-VfBX2xBQZURfc5RBcmO6Iu7acUIc4VVUElFGTjUHkw1bf4J42HV-wtHHKVH1Efmw_ejgXOj_2s-fHt8qG7Wt3cfb_uNjcrx7GaV1QAEcQLh7lvW658OzAs5MB76nulHQalRS_rKU7VNgwe91wy6cFjSZliZ831wh2S3Zkph73NTybZYF4XKf80Ns_BjWCUbJlSvh-canlLvOI9kcxyIbUU4PrK-rSwppx-H6DMZpcOuR5dDG0p4VRzQquKLSqXUykZ_NuvBJuX4MwSnHkJzhyDq66LxRUA4M2hNWZCU_YMp0yVag</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yao, Chengpeng</creator><creator>Yang, Yu</creator><creator>Yin, Kun</creator><creator>Yang, Jinwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5882-0322</orcidid><orcidid>https://orcid.org/0000-0003-3308-3941</orcidid><orcidid>https://orcid.org/0000-0003-4526-0239</orcidid></search><sort><creationdate>2022</creationdate><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><author>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>deep convolution neural network</topic><topic>denial of service</topic><topic>Denial of service attacks</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>network attack</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Representation learning</topic><topic>Storage capacity</topic><topic>Telecommunication traffic</topic><topic>Traffic capacity</topic><topic>Traffic models</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Chengpeng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yin, Kun</creatorcontrib><creatorcontrib>Yang, Jinwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Chengpeng</au><au>Yang, Yu</au><au>Yin, Kun</au><au>Yang, Jinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>103136</spage><epage>103149</epage><pages>103136-103149</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3210189</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5882-0322</orcidid><orcidid>https://orcid.org/0000-0003-3308-3941</orcidid><orcidid>https://orcid.org/0000-0003-4526-0239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.103136-103149
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9903592
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Anomalies
Anomaly detection
Artificial neural networks
Classification
Convolutional neural networks
deep convolution neural network
denial of service
Denial of service attacks
Feature extraction
Machine learning
network attack
Neural networks
Principal component analysis
Principal components analysis
Representation learning
Storage capacity
Telecommunication traffic
Traffic capacity
Traffic models
Wireless networks
Wireless sensor networks
title Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20Anomaly%20Detection%20in%20Wireless%20Sensor%20Networks%20Based%20on%20Principal%20Component%20Analysis%20and%20Deep%20Convolution%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Yao,%20Chengpeng&rft.date=2022&rft.volume=10&rft.spage=103136&rft.epage=103149&rft.pages=103136-103149&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3210189&rft_dat=%3Cproquest_ieee_%3E2721429412%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429412&rft_id=info:pmid/&rft_ieee_id=9903592&rft_doaj_id=oai_doaj_org_article_867388fbdc87471f84b163a456965ecb&rfr_iscdi=true