Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network
With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network att...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.103136-103149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103149 |
---|---|
container_issue | |
container_start_page | 103136 |
container_title | IEEE access |
container_volume | 10 |
creator | Yao, Chengpeng Yang, Yu Yin, Kun Yang, Jinwei |
description | With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect. |
doi_str_mv | 10.1109/ACCESS.2022.3210189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903592</ieee_id><doaj_id>oai_doaj_org_article_867388fbdc87471f84b163a456965ecb</doaj_id><sourcerecordid>2721429412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1pISHNJ8hF0PNu9d_SceumTSAkgU3JUcjyqGjrlVzJ25JTv3qUeAmdywyj935ieE1zQfCaEKw_b7rucrtdU0zpmlGCidLvmlNKpF4xweT7_-aT5ryUHa6l6kq0p82_h2y9Dw5tYtrb8Ql9hRncHFJEIaLHkGGEUtAWYkkZ3cL8N-VfBX2xBQZURfc5RBcmO6Iu7acUIc4VVUElFGTjUHkw1bf4J42HV-wtHHKVH1Efmw_ejgXOj_2s-fHt8qG7Wt3cfb_uNjcrx7GaV1QAEcQLh7lvW658OzAs5MB76nulHQalRS_rKU7VNgwe91wy6cFjSZliZ831wh2S3Zkph73NTybZYF4XKf80Ns_BjWCUbJlSvh-canlLvOI9kcxyIbUU4PrK-rSwppx-H6DMZpcOuR5dDG0p4VRzQquKLSqXUykZ_NuvBJuX4MwSnHkJzhyDq66LxRUA4M2hNWZCU_YMp0yVag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429412</pqid></control><display><type>article</type><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</creator><creatorcontrib>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</creatorcontrib><description>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3210189</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Artificial neural networks ; Classification ; Convolutional neural networks ; deep convolution neural network ; denial of service ; Denial of service attacks ; Feature extraction ; Machine learning ; network attack ; Neural networks ; Principal component analysis ; Principal components analysis ; Representation learning ; Storage capacity ; Telecommunication traffic ; Traffic capacity ; Traffic models ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE access, 2022, Vol.10, p.103136-103149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</citedby><cites>FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</cites><orcidid>0000-0002-5882-0322 ; 0000-0003-3308-3941 ; 0000-0003-4526-0239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903592$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yao, Chengpeng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yin, Kun</creatorcontrib><creatorcontrib>Yang, Jinwei</creatorcontrib><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>deep convolution neural network</subject><subject>denial of service</subject><subject>Denial of service attacks</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>network attack</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Representation learning</subject><subject>Storage capacity</subject><subject>Telecommunication traffic</subject><subject>Traffic capacity</subject><subject>Traffic models</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1pISHNJ8hF0PNu9d_SceumTSAkgU3JUcjyqGjrlVzJ25JTv3qUeAmdywyj935ieE1zQfCaEKw_b7rucrtdU0zpmlGCidLvmlNKpF4xweT7_-aT5ryUHa6l6kq0p82_h2y9Dw5tYtrb8Ql9hRncHFJEIaLHkGGEUtAWYkkZ3cL8N-VfBX2xBQZURfc5RBcmO6Iu7acUIc4VVUElFGTjUHkw1bf4J42HV-wtHHKVH1Efmw_ejgXOj_2s-fHt8qG7Wt3cfb_uNjcrx7GaV1QAEcQLh7lvW658OzAs5MB76nulHQalRS_rKU7VNgwe91wy6cFjSZliZ831wh2S3Zkph73NTybZYF4XKf80Ns_BjWCUbJlSvh-canlLvOI9kcxyIbUU4PrK-rSwppx-H6DMZpcOuR5dDG0p4VRzQquKLSqXUykZ_NuvBJuX4MwSnHkJzhyDq66LxRUA4M2hNWZCU_YMp0yVag</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yao, Chengpeng</creator><creator>Yang, Yu</creator><creator>Yin, Kun</creator><creator>Yang, Jinwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5882-0322</orcidid><orcidid>https://orcid.org/0000-0003-3308-3941</orcidid><orcidid>https://orcid.org/0000-0003-4526-0239</orcidid></search><sort><creationdate>2022</creationdate><title>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</title><author>Yao, Chengpeng ; Yang, Yu ; Yin, Kun ; Yang, Jinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-25e151f5c04f7748f7d3056d4b2fb89c0e895b6affc8b6addf0b4636fef062383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>deep convolution neural network</topic><topic>denial of service</topic><topic>Denial of service attacks</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>network attack</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Representation learning</topic><topic>Storage capacity</topic><topic>Telecommunication traffic</topic><topic>Traffic capacity</topic><topic>Traffic models</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Chengpeng</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yin, Kun</creatorcontrib><creatorcontrib>Yang, Jinwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Chengpeng</au><au>Yang, Yu</au><au>Yin, Kun</au><au>Yang, Jinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>103136</spage><epage>103149</epage><pages>103136-103149</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the popularity of wireless networks, wireless sensor networks (WSNs) have advanced rapidly, and their flexibility and ease of deployment have resulted in more security concerns, making it critical to research network intrusion prevention for WSNs. Denial of service (DoS) is a common network attack, achieving its goal by bringing down the target network. A DoS attack on WSNs devices with limited resources would be fatal. This paper proposes a method based on principal component analysis (PCA) and a deep convolution neural network (DCNN) for DoS traffic anomaly detection in WSNs, based on the vulnerability of WSNs to attacks and the limited storage space of their devices. Compared with the conventional deep learning structure, the proposed model has a lightweight structure and more effective feature extraction capability, which can effectively detect network abnormal traffic in WSNs devices with limited storage capacity. To assure the effectiveness of the proposed model, receiver operating characteristic (ROC) curves, various classification metrics, and confusion matrices are used to verify the classification results of the model. Through experimental comparison, the proposed model, with small model size, outperforms other mainstream abnormal traffic detection models in terms of classification effect.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3210189</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5882-0322</orcidid><orcidid>https://orcid.org/0000-0003-3308-3941</orcidid><orcidid>https://orcid.org/0000-0003-4526-0239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.103136-103149 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9903592 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Anomalies Anomaly detection Artificial neural networks Classification Convolutional neural networks deep convolution neural network denial of service Denial of service attacks Feature extraction Machine learning network attack Neural networks Principal component analysis Principal components analysis Representation learning Storage capacity Telecommunication traffic Traffic capacity Traffic models Wireless networks Wireless sensor networks |
title | Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20Anomaly%20Detection%20in%20Wireless%20Sensor%20Networks%20Based%20on%20Principal%20Component%20Analysis%20and%20Deep%20Convolution%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Yao,%20Chengpeng&rft.date=2022&rft.volume=10&rft.spage=103136&rft.epage=103149&rft.pages=103136-103149&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3210189&rft_dat=%3Cproquest_ieee_%3E2721429412%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429412&rft_id=info:pmid/&rft_ieee_id=9903592&rft_doaj_id=oai_doaj_org_article_867388fbdc87471f84b163a456965ecb&rfr_iscdi=true |