A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor

As a competitive candidate for artificial neurons, memristors have become the focus of intense research owing to their intrinsic ion migration tunability, enabling an authentic implementation of biomimicry. However, they still suffer from variability issues due to 3-D uncontrollable filament dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-11, Vol.69 (11), p.6049-6056
Hauptverfasser: Qian, Fangsheng, Chen, Ruo-Si, Wang, Ruopeng, Wang, Junjie, Xie, Peng, Mao, Jing-Yu, Lv, Ziyu, Ye, Shenghao, Yang, Jia-Qin, Wang, Zhanpeng, Zhou, Ye, Han, Su-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6056
container_issue 11
container_start_page 6049
container_title IEEE transactions on electron devices
container_volume 69
creator Qian, Fangsheng
Chen, Ruo-Si
Wang, Ruopeng
Wang, Junjie
Xie, Peng
Mao, Jing-Yu
Lv, Ziyu
Ye, Shenghao
Yang, Jia-Qin
Wang, Zhanpeng
Zhou, Ye
Han, Su-Ting
description As a competitive candidate for artificial neurons, memristors have become the focus of intense research owing to their intrinsic ion migration tunability, enabling an authentic implementation of biomimicry. However, they still suffer from variability issues due to 3-D uncontrollable filament dynamics in an amorphous medium and modeling of switching dynamics underlying filament growth and rupture is still under investigation. In this work, we present volatile memristors that exhibit desired characteristics for neuromorphic computing with low performance variations utilizing a hexagonal boron nitride (h-BN) monocrystalline as a switching medium. Theoretical investigations assisted by the Monte Carlo simulation combined with experimentally detected {I} - {V} characteristics described that the electric field dominates the set process, whereas the Gibbs-Thomson interfacial energy minimization and heat dissipation influence the relaxation process mostly. Additionally, h-BN memristors with high switching uniformity provide an ideal hardware platform for credible neuron emulation and software identification of digital images.
doi_str_mv 10.1109/TED.2022.3206170
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9903409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903409</ieee_id><sourcerecordid>2727045584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-30bb8205937e54eabd7ce73a11a7c68646709e31a88f19a40f285356f55213783</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08aKHYj-37VEQhATwguem7M7iImyxXRL5710C8TQzmfcmb34I3TPaY4zal8Xwrccp5z3BacY0vUAdppQmNpPZJepQygyxwohrdJPSuh0zKXkH5a94Cv77gCd1A6voGyC-LsioioDnsI-hxn2foMBtM4Zfvwq13-B-OC7mVROrAvDTF-nPn_Es1CGPh9T4zaaqAc9gG6vUhHiLrkq_SXB3rl30ORouBmMy_XifDF6nJOeWNUTQ5dJwqqzQoCT4ZaFz0MIz5nWemfYPTS0I5o0pmfWSltwoobJSKc6ENqKLHk93dzH87CE1bh32sc2bHNdcU6mUka2KnlR5DClFKN0uVlsfD45Rd0TpWpTuiNKdUbaWh5OlAoB_ubVUSGrFH3XubTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045584</pqid></control><display><type>article</type><title>A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor</title><source>IEEE Electronic Library (IEL)</source><creator>Qian, Fangsheng ; Chen, Ruo-Si ; Wang, Ruopeng ; Wang, Junjie ; Xie, Peng ; Mao, Jing-Yu ; Lv, Ziyu ; Ye, Shenghao ; Yang, Jia-Qin ; Wang, Zhanpeng ; Zhou, Ye ; Han, Su-Ting</creator><creatorcontrib>Qian, Fangsheng ; Chen, Ruo-Si ; Wang, Ruopeng ; Wang, Junjie ; Xie, Peng ; Mao, Jing-Yu ; Lv, Ziyu ; Ye, Shenghao ; Yang, Jia-Qin ; Wang, Zhanpeng ; Zhou, Ye ; Han, Su-Ting</creatorcontrib><description><![CDATA[As a competitive candidate for artificial neurons, memristors have become the focus of intense research owing to their intrinsic ion migration tunability, enabling an authentic implementation of biomimicry. However, they still suffer from variability issues due to 3-D uncontrollable filament dynamics in an amorphous medium and modeling of switching dynamics underlying filament growth and rupture is still under investigation. In this work, we present volatile memristors that exhibit desired characteristics for neuromorphic computing with low performance variations utilizing a hexagonal boron nitride (h-BN) monocrystalline as a switching medium. Theoretical investigations assisted by the Monte Carlo simulation combined with experimentally detected <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics described that the electric field dominates the set process, whereas the Gibbs-Thomson interfacial energy minimization and heat dissipation influence the relaxation process mostly. Additionally, h-BN memristors with high switching uniformity provide an ideal hardware platform for credible neuron emulation and software identification of digital images.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3206170</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boron ; Boron nitride ; Digital imaging ; Electric fields ; Electrodes ; Hexagonal boron nitride (h-BN) ; Interfacial energy ; Ion migration ; Memristors ; monocrystalline ; Monte Carlo simulation ; Neurons ; Performance evaluation ; spiking neural network (SNN) ; Switches ; Switching ; Threshold voltage</subject><ispartof>IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6049-6056</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-30bb8205937e54eabd7ce73a11a7c68646709e31a88f19a40f285356f55213783</citedby><cites>FETCH-LOGICAL-c291t-30bb8205937e54eabd7ce73a11a7c68646709e31a88f19a40f285356f55213783</cites><orcidid>0000-0003-3392-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Chen, Ruo-Si</creatorcontrib><creatorcontrib>Wang, Ruopeng</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Mao, Jing-Yu</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Ye, Shenghao</creatorcontrib><creatorcontrib>Yang, Jia-Qin</creatorcontrib><creatorcontrib>Wang, Zhanpeng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><title>A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[As a competitive candidate for artificial neurons, memristors have become the focus of intense research owing to their intrinsic ion migration tunability, enabling an authentic implementation of biomimicry. However, they still suffer from variability issues due to 3-D uncontrollable filament dynamics in an amorphous medium and modeling of switching dynamics underlying filament growth and rupture is still under investigation. In this work, we present volatile memristors that exhibit desired characteristics for neuromorphic computing with low performance variations utilizing a hexagonal boron nitride (h-BN) monocrystalline as a switching medium. Theoretical investigations assisted by the Monte Carlo simulation combined with experimentally detected <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics described that the electric field dominates the set process, whereas the Gibbs-Thomson interfacial energy minimization and heat dissipation influence the relaxation process mostly. Additionally, h-BN memristors with high switching uniformity provide an ideal hardware platform for credible neuron emulation and software identification of digital images.]]></description><subject>Boron</subject><subject>Boron nitride</subject><subject>Digital imaging</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Hexagonal boron nitride (h-BN)</subject><subject>Interfacial energy</subject><subject>Ion migration</subject><subject>Memristors</subject><subject>monocrystalline</subject><subject>Monte Carlo simulation</subject><subject>Neurons</subject><subject>Performance evaluation</subject><subject>spiking neural network (SNN)</subject><subject>Switches</subject><subject>Switching</subject><subject>Threshold voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbw08aKHYj-37VEQhATwguem7M7iImyxXRL5710C8TQzmfcmb34I3TPaY4zal8Xwrccp5z3BacY0vUAdppQmNpPZJepQygyxwohrdJPSuh0zKXkH5a94Cv77gCd1A6voGyC-LsioioDnsI-hxn2foMBtM4Zfvwq13-B-OC7mVROrAvDTF-nPn_Es1CGPh9T4zaaqAc9gG6vUhHiLrkq_SXB3rl30ORouBmMy_XifDF6nJOeWNUTQ5dJwqqzQoCT4ZaFz0MIz5nWemfYPTS0I5o0pmfWSltwoobJSKc6ENqKLHk93dzH87CE1bh32sc2bHNdcU6mUka2KnlR5DClFKN0uVlsfD45Rd0TpWpTuiNKdUbaWh5OlAoB_ubVUSGrFH3XubTY</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Qian, Fangsheng</creator><creator>Chen, Ruo-Si</creator><creator>Wang, Ruopeng</creator><creator>Wang, Junjie</creator><creator>Xie, Peng</creator><creator>Mao, Jing-Yu</creator><creator>Lv, Ziyu</creator><creator>Ye, Shenghao</creator><creator>Yang, Jia-Qin</creator><creator>Wang, Zhanpeng</creator><creator>Zhou, Ye</creator><creator>Han, Su-Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></search><sort><creationdate>20221101</creationdate><title>A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor</title><author>Qian, Fangsheng ; Chen, Ruo-Si ; Wang, Ruopeng ; Wang, Junjie ; Xie, Peng ; Mao, Jing-Yu ; Lv, Ziyu ; Ye, Shenghao ; Yang, Jia-Qin ; Wang, Zhanpeng ; Zhou, Ye ; Han, Su-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-30bb8205937e54eabd7ce73a11a7c68646709e31a88f19a40f285356f55213783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron</topic><topic>Boron nitride</topic><topic>Digital imaging</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Hexagonal boron nitride (h-BN)</topic><topic>Interfacial energy</topic><topic>Ion migration</topic><topic>Memristors</topic><topic>monocrystalline</topic><topic>Monte Carlo simulation</topic><topic>Neurons</topic><topic>Performance evaluation</topic><topic>spiking neural network (SNN)</topic><topic>Switches</topic><topic>Switching</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Chen, Ruo-Si</creatorcontrib><creatorcontrib>Wang, Ruopeng</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Xie, Peng</creatorcontrib><creatorcontrib>Mao, Jing-Yu</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Ye, Shenghao</creatorcontrib><creatorcontrib>Yang, Jia-Qin</creatorcontrib><creatorcontrib>Wang, Zhanpeng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Fangsheng</au><au>Chen, Ruo-Si</au><au>Wang, Ruopeng</au><au>Wang, Junjie</au><au>Xie, Peng</au><au>Mao, Jing-Yu</au><au>Lv, Ziyu</au><au>Ye, Shenghao</au><au>Yang, Jia-Qin</au><au>Wang, Zhanpeng</au><au>Zhou, Ye</au><au>Han, Su-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>6049</spage><epage>6056</epage><pages>6049-6056</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[As a competitive candidate for artificial neurons, memristors have become the focus of intense research owing to their intrinsic ion migration tunability, enabling an authentic implementation of biomimicry. However, they still suffer from variability issues due to 3-D uncontrollable filament dynamics in an amorphous medium and modeling of switching dynamics underlying filament growth and rupture is still under investigation. In this work, we present volatile memristors that exhibit desired characteristics for neuromorphic computing with low performance variations utilizing a hexagonal boron nitride (h-BN) monocrystalline as a switching medium. Theoretical investigations assisted by the Monte Carlo simulation combined with experimentally detected <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics described that the electric field dominates the set process, whereas the Gibbs-Thomson interfacial energy minimization and heat dissipation influence the relaxation process mostly. Additionally, h-BN memristors with high switching uniformity provide an ideal hardware platform for credible neuron emulation and software identification of digital images.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3206170</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6049-6056
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9903409
source IEEE Electronic Library (IEL)
subjects Boron
Boron nitride
Digital imaging
Electric fields
Electrodes
Hexagonal boron nitride (h-BN)
Interfacial energy
Ion migration
Memristors
monocrystalline
Monte Carlo simulation
Neurons
Performance evaluation
spiking neural network (SNN)
Switches
Switching
Threshold voltage
title A Leaky Integrate-and-Fire Neuron Based on Hexagonal Boron Nitride (h-BN) Monocrystalline Memristor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Leaky%20Integrate-and-Fire%20Neuron%20Based%20on%20Hexagonal%20Boron%20Nitride%20(h-BN)%20Monocrystalline%20Memristor&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Qian,%20Fangsheng&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=6049&rft.epage=6056&rft.pages=6049-6056&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3206170&rft_dat=%3Cproquest_RIE%3E2727045584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045584&rft_id=info:pmid/&rft_ieee_id=9903409&rfr_iscdi=true