Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion
Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especia...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Ngo, Dat Lee, Gi-Dong Kang, Bongsoon |
description | Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems. |
doi_str_mv | 10.1109/ACCESS.2022.3209665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903394</ieee_id><doaj_id>oai_doaj_org_article_aa1d097754d24ef7b155172cf5884211</doaj_id><sourcerecordid>2721429916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuQXcGniGdzv7h5JRSTBeEDicTPd7kIRurhbEvXXWywhzmE-Xua9mbwkGWI0xhiph0meT5fLMUGEjClBSgh-lfQIFmpEORXX__rbZBDjFrUhW4hnvSRfVvXapvM9tPnRbuCnndP3qtmkqzpuIBzSF4gfJxDqMs39zod0Bvtjk06_DlDHytd3yY2DXbSDc-0nq6fpW_48WrzO5vlkMTKUy2akWGkEltJxwYzg2FCWqUKBcBnnyEKBsEMFBzCESOOEI1RIJhnigheFlLSfzDvd0sNWH0K1h_CtPVT6D_BhrSE0ldlZDYBLpLKMs5Iw67ICc44zYhyXkhGMW637TusQ_OfRxkZv_THU7fuaZAQzohQW7RbttkzwMQbrLlcx0ifzdWe-Ppmvz-a3rGHHqqy1F4ZSiFLF6C_STn02</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429916</pqid></control><display><type>article</type><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</creator><creatorcontrib>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</creatorcontrib><description>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3209665</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Cameras ; Color ; color gamut expansion ; Computer vision ; Deep learning ; Degradation ; Haze ; Image color analysis ; Image dehazing ; linear time complexity ; Machine learning ; Maintenance costs ; Masking ; Scattering ; unsharp masking ; Vision systems</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</cites><orcidid>0000-0002-4402-1570 ; 0000-0002-3896-648X ; 0000-0001-6716-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903394$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Ngo, Dat</creatorcontrib><creatorcontrib>Lee, Gi-Dong</creatorcontrib><creatorcontrib>Kang, Bongsoon</creatorcontrib><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Cameras</subject><subject>Color</subject><subject>color gamut expansion</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Haze</subject><subject>Image color analysis</subject><subject>Image dehazing</subject><subject>linear time complexity</subject><subject>Machine learning</subject><subject>Maintenance costs</subject><subject>Masking</subject><subject>Scattering</subject><subject>unsharp masking</subject><subject>Vision systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuQXcGniGdzv7h5JRSTBeEDicTPd7kIRurhbEvXXWywhzmE-Xua9mbwkGWI0xhiph0meT5fLMUGEjClBSgh-lfQIFmpEORXX__rbZBDjFrUhW4hnvSRfVvXapvM9tPnRbuCnndP3qtmkqzpuIBzSF4gfJxDqMs39zod0Bvtjk06_DlDHytd3yY2DXbSDc-0nq6fpW_48WrzO5vlkMTKUy2akWGkEltJxwYzg2FCWqUKBcBnnyEKBsEMFBzCESOOEI1RIJhnigheFlLSfzDvd0sNWH0K1h_CtPVT6D_BhrSE0ldlZDYBLpLKMs5Iw67ICc44zYhyXkhGMW637TusQ_OfRxkZv_THU7fuaZAQzohQW7RbttkzwMQbrLlcx0ifzdWe-Ppmvz-a3rGHHqqy1F4ZSiFLF6C_STn02</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ngo, Dat</creator><creator>Lee, Gi-Dong</creator><creator>Kang, Bongsoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4402-1570</orcidid><orcidid>https://orcid.org/0000-0002-3896-648X</orcidid><orcidid>https://orcid.org/0000-0001-6716-5799</orcidid></search><sort><creationdate>2022</creationdate><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><author>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Cameras</topic><topic>Color</topic><topic>color gamut expansion</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Haze</topic><topic>Image color analysis</topic><topic>Image dehazing</topic><topic>linear time complexity</topic><topic>Machine learning</topic><topic>Maintenance costs</topic><topic>Masking</topic><topic>Scattering</topic><topic>unsharp masking</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Dat</creatorcontrib><creatorcontrib>Lee, Gi-Dong</creatorcontrib><creatorcontrib>Kang, Bongsoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Dat</au><au>Lee, Gi-Dong</au><au>Kang, Bongsoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3209665</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4402-1570</orcidid><orcidid>https://orcid.org/0000-0002-3896-648X</orcidid><orcidid>https://orcid.org/0000-0001-6716-5799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9903394 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Atmospheric modeling Cameras Color color gamut expansion Computer vision Deep learning Degradation Haze Image color analysis Image dehazing linear time complexity Machine learning Maintenance costs Masking Scattering unsharp masking Vision systems |
title | Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singe%20Image%20Dehazing%20With%20Unsharp%20Masking%20and%20Color%20Gamut%20Expansion&rft.jtitle=IEEE%20access&rft.au=Ngo,%20Dat&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3209665&rft_dat=%3Cproquest_ieee_%3E2721429916%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429916&rft_id=info:pmid/&rft_ieee_id=9903394&rft_doaj_id=oai_doaj_org_article_aa1d097754d24ef7b155172cf5884211&rfr_iscdi=true |