Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion

Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Ngo, Dat, Lee, Gi-Dong, Kang, Bongsoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Ngo, Dat
Lee, Gi-Dong
Kang, Bongsoon
description Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.
doi_str_mv 10.1109/ACCESS.2022.3209665
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9903394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903394</ieee_id><doaj_id>oai_doaj_org_article_aa1d097754d24ef7b155172cf5884211</doaj_id><sourcerecordid>2721429916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuQXcGniGdzv7h5JRSTBeEDicTPd7kIRurhbEvXXWywhzmE-Xua9mbwkGWI0xhiph0meT5fLMUGEjClBSgh-lfQIFmpEORXX__rbZBDjFrUhW4hnvSRfVvXapvM9tPnRbuCnndP3qtmkqzpuIBzSF4gfJxDqMs39zod0Bvtjk06_DlDHytd3yY2DXbSDc-0nq6fpW_48WrzO5vlkMTKUy2akWGkEltJxwYzg2FCWqUKBcBnnyEKBsEMFBzCESOOEI1RIJhnigheFlLSfzDvd0sNWH0K1h_CtPVT6D_BhrSE0ldlZDYBLpLKMs5Iw67ICc44zYhyXkhGMW637TusQ_OfRxkZv_THU7fuaZAQzohQW7RbttkzwMQbrLlcx0ifzdWe-Ppmvz-a3rGHHqqy1F4ZSiFLF6C_STn02</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429916</pqid></control><display><type>article</type><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</creator><creatorcontrib>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</creatorcontrib><description>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3209665</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric modeling ; Cameras ; Color ; color gamut expansion ; Computer vision ; Deep learning ; Degradation ; Haze ; Image color analysis ; Image dehazing ; linear time complexity ; Machine learning ; Maintenance costs ; Masking ; Scattering ; unsharp masking ; Vision systems</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</cites><orcidid>0000-0002-4402-1570 ; 0000-0002-3896-648X ; 0000-0001-6716-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903394$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Ngo, Dat</creatorcontrib><creatorcontrib>Lee, Gi-Dong</creatorcontrib><creatorcontrib>Kang, Bongsoon</creatorcontrib><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</description><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Cameras</subject><subject>Color</subject><subject>color gamut expansion</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Haze</subject><subject>Image color analysis</subject><subject>Image dehazing</subject><subject>linear time complexity</subject><subject>Machine learning</subject><subject>Maintenance costs</subject><subject>Masking</subject><subject>Scattering</subject><subject>unsharp masking</subject><subject>Vision systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuQXcGniGdzv7h5JRSTBeEDicTPd7kIRurhbEvXXWywhzmE-Xua9mbwkGWI0xhiph0meT5fLMUGEjClBSgh-lfQIFmpEORXX__rbZBDjFrUhW4hnvSRfVvXapvM9tPnRbuCnndP3qtmkqzpuIBzSF4gfJxDqMs39zod0Bvtjk06_DlDHytd3yY2DXbSDc-0nq6fpW_48WrzO5vlkMTKUy2akWGkEltJxwYzg2FCWqUKBcBnnyEKBsEMFBzCESOOEI1RIJhnigheFlLSfzDvd0sNWH0K1h_CtPVT6D_BhrSE0ldlZDYBLpLKMs5Iw67ICc44zYhyXkhGMW637TusQ_OfRxkZv_THU7fuaZAQzohQW7RbttkzwMQbrLlcx0ifzdWe-Ppmvz-a3rGHHqqy1F4ZSiFLF6C_STn02</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ngo, Dat</creator><creator>Lee, Gi-Dong</creator><creator>Kang, Bongsoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4402-1570</orcidid><orcidid>https://orcid.org/0000-0002-3896-648X</orcidid><orcidid>https://orcid.org/0000-0001-6716-5799</orcidid></search><sort><creationdate>2022</creationdate><title>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</title><author>Ngo, Dat ; Lee, Gi-Dong ; Kang, Bongsoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-94dc6188f564c651c3479b9a6f7550eab01f0b5aac228cf6f23684840565bb883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Cameras</topic><topic>Color</topic><topic>color gamut expansion</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Haze</topic><topic>Image color analysis</topic><topic>Image dehazing</topic><topic>linear time complexity</topic><topic>Machine learning</topic><topic>Maintenance costs</topic><topic>Masking</topic><topic>Scattering</topic><topic>unsharp masking</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Dat</creatorcontrib><creatorcontrib>Lee, Gi-Dong</creatorcontrib><creatorcontrib>Kang, Bongsoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Dat</au><au>Lee, Gi-Dong</au><au>Kang, Bongsoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image dehazing is a fundamental problem in computer vision and has hitherto engendered prodigious amounts of studies. Recently, with the well-recognized success of deep learning techniques, this field has been dominated by deep dehazing models. However, deep learning is not always a panacea, especially for the practicalities of image dehazing, because high computational complexity, expensive maintenance costs, and high carbon emission are three noticeable problems. Computational efficiency is, therefore, a decisive factor in real-world circumstances. To cope with this growing demand, we propose a linear time algorithm tailored to three primitive parts: unsharp masking (pre-processing), dehazing, and color gamut expansion (post-processing). The first enhances the sharpness according to the local variance of image intensities. The second removes haze based on the improved color attenuation prior, and the third addresses a residual effect of color gamut reduction. Extensive experimental results demonstrated that the proposed method performed comparatively with popular benchmarks, notably deep dehazing models. With such a comparative performance, the proposed method is still fast and efficient, favoring real-world computer vision systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3209665</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4402-1570</orcidid><orcidid>https://orcid.org/0000-0002-3896-648X</orcidid><orcidid>https://orcid.org/0000-0001-6716-5799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9903394
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Atmospheric modeling
Cameras
Color
color gamut expansion
Computer vision
Deep learning
Degradation
Haze
Image color analysis
Image dehazing
linear time complexity
Machine learning
Maintenance costs
Masking
Scattering
unsharp masking
Vision systems
title Singe Image Dehazing With Unsharp Masking and Color Gamut Expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singe%20Image%20Dehazing%20With%20Unsharp%20Masking%20and%20Color%20Gamut%20Expansion&rft.jtitle=IEEE%20access&rft.au=Ngo,%20Dat&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3209665&rft_dat=%3Cproquest_ieee_%3E2721429916%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429916&rft_id=info:pmid/&rft_ieee_id=9903394&rft_doaj_id=oai_doaj_org_article_aa1d097754d24ef7b155172cf5884211&rfr_iscdi=true