Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising
We present a long distance distributed strain sensing in optical frequency domain reflectometry (OFDR) by shape-adaptive principal component analysis Block-Matching three-dimensional filter (BM3D-SAPCA) image denoising, which uses correlated patterns and high degree redundancy of sensing data for en...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-12, Vol.40 (24), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 24 |
container_start_page | 1 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Pan, Ming Hua, Peidong Ding, Zhenyang Zhu, Dongfang Liu, Kun Jiang, Junfeng Wang, Chenhuan Guo, Haohan Zhang, Teng Li, Sheng Liu, Tiegen |
description | We present a long distance distributed strain sensing in optical frequency domain reflectometry (OFDR) by shape-adaptive principal component analysis Block-Matching three-dimensional filter (BM3D-SAPCA) image denoising, which uses correlated patterns and high degree redundancy of sensing data for enhancing the performance of distributed sensing by image processing for removing noise and increasing the signal-to-noise ratio (SNR) of noisy measurements. Compared with 2D image denoising methods, BM3D-SAPCA method searches similar 2D image blocks and stacks them together in 3D arrays, which takes full advantage of the high level of similitude and redundancy contained on the multidimensional information to denoise. We find that the BM3D-SAPCA method can effectively suppresses noise aggravation along with an increasing of the sensing distance. Without modifying the hardware system of OFDR, we achieve a distributed strain sensing with a 5 cm spatial resolution, a 2 μϵ strain resolution on a 200 m all grating fiber. We compare the performance of distributed strain sensing by BM3D-SAPCA with Gaussian filter, wavelet denoising (WD) and non-local mean filter (NLM) using the same data. The mean maximal strain measurement error at loaded strain areas is reduced from 2.3791 μϵ to 0.6545 μϵ by BM3D-SAPCA. These mean errors by Gaussian filter, NLM and WD are 1.1177 μϵ, 1.6668 μϵ and 1.9721 μϵ, respectively. The mean standard deviations of strain measurement in eight repeat experiments is reduced from 1.5221 μϵ to 0.3134 μϵ after noise reduction by BM3D-SAPCA, which is 79.37% lower than the raw data. The mean standard deviations after noise reduction by Gaussian filter, NLM and WD are decreased by 68.85%, 64.24% and 14.41% respectively. |
doi_str_mv | 10.1109/JLT.2022.3209020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9900401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9900401</ieee_id><sourcerecordid>2756556696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-da34080bbcd1fb37984feb33acae3895def16d9efc5138744c9b76f1465fe57d3</originalsourceid><addsrcrecordid>eNo9kE1PwkAURSdGExHdm7hp4rr1zVens0QQxVQxguvJtH1DSqTFmbLg31uEuHp3ce59ySHklkJCKeiH13yZMGAs4Qw0MDgjAyplFjNG-TkZgOI8zhQTl-QqhDUAFSJTA_Ket80qmtShs02Jf8HXxa7DKlp03tZNtMAm1D3Tx_l08hkV--jxjU_ixehjPIpmG7vqa9i09YG6JhfOfge8Od0h-Zo-LccvcT5_no1HeVwyTbu4slxABkVRVtQVXOlMOCw4t6VFnmlZoaNppdGVkvJMCVHqQqWOilQ6lKriQ3J_3N369meHoTPrdueb_qVhSqZSpqlOewqOVOnbEDw6s_X1xvq9oWAO1kxvzRysmZO1vnJ3rNSI-I9rDSCA8l9-rGZ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756556696</pqid></control><display><type>article</type><title>Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Ming ; Hua, Peidong ; Ding, Zhenyang ; Zhu, Dongfang ; Liu, Kun ; Jiang, Junfeng ; Wang, Chenhuan ; Guo, Haohan ; Zhang, Teng ; Li, Sheng ; Liu, Tiegen</creator><creatorcontrib>Pan, Ming ; Hua, Peidong ; Ding, Zhenyang ; Zhu, Dongfang ; Liu, Kun ; Jiang, Junfeng ; Wang, Chenhuan ; Guo, Haohan ; Zhang, Teng ; Li, Sheng ; Liu, Tiegen</creatorcontrib><description>We present a long distance distributed strain sensing in optical frequency domain reflectometry (OFDR) by shape-adaptive principal component analysis Block-Matching three-dimensional filter (BM3D-SAPCA) image denoising, which uses correlated patterns and high degree redundancy of sensing data for enhancing the performance of distributed sensing by image processing for removing noise and increasing the signal-to-noise ratio (SNR) of noisy measurements. Compared with 2D image denoising methods, BM3D-SAPCA method searches similar 2D image blocks and stacks them together in 3D arrays, which takes full advantage of the high level of similitude and redundancy contained on the multidimensional information to denoise. We find that the BM3D-SAPCA method can effectively suppresses noise aggravation along with an increasing of the sensing distance. Without modifying the hardware system of OFDR, we achieve a distributed strain sensing with a 5 cm spatial resolution, a 2 μϵ strain resolution on a 200 m all grating fiber. We compare the performance of distributed strain sensing by BM3D-SAPCA with Gaussian filter, wavelet denoising (WD) and non-local mean filter (NLM) using the same data. The mean maximal strain measurement error at loaded strain areas is reduced from 2.3791 μϵ to 0.6545 μϵ by BM3D-SAPCA. These mean errors by Gaussian filter, NLM and WD are 1.1177 μϵ, 1.6668 μϵ and 1.9721 μϵ, respectively. The mean standard deviations of strain measurement in eight repeat experiments is reduced from 1.5221 μϵ to 0.3134 μϵ after noise reduction by BM3D-SAPCA, which is 79.37% lower than the raw data. The mean standard deviations after noise reduction by Gaussian filter, NLM and WD are decreased by 68.85%, 64.24% and 14.41% respectively.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3209020</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>denoising ; distributed optical fiber sensing ; Error analysis ; Image denoising ; Image enhancement ; Image filters ; Image processing ; Noise reduction ; Optical fiber filters ; Optical fiber sensors ; Optical fibers ; Optical frequency ; optical frequency domain reflectometry ; Principal components analysis ; Redundancy ; Signal processing ; Signal to noise ratio ; Spatial resolution ; Standard deviation ; Strain ; Strain measurement ; strain sensing ; Three dimensional analysis</subject><ispartof>Journal of lightwave technology, 2022-12, Vol.40 (24), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-da34080bbcd1fb37984feb33acae3895def16d9efc5138744c9b76f1465fe57d3</citedby><cites>FETCH-LOGICAL-c291t-da34080bbcd1fb37984feb33acae3895def16d9efc5138744c9b76f1465fe57d3</cites><orcidid>0000-0002-0483-477X ; 0000-0003-0393-8451 ; 0000-0003-4141-6961 ; 0000-0003-2460-6851 ; 0000-0002-4657-3395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9900401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9900401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Ming</creatorcontrib><creatorcontrib>Hua, Peidong</creatorcontrib><creatorcontrib>Ding, Zhenyang</creatorcontrib><creatorcontrib>Zhu, Dongfang</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Wang, Chenhuan</creatorcontrib><creatorcontrib>Guo, Haohan</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Tiegen</creatorcontrib><title>Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We present a long distance distributed strain sensing in optical frequency domain reflectometry (OFDR) by shape-adaptive principal component analysis Block-Matching three-dimensional filter (BM3D-SAPCA) image denoising, which uses correlated patterns and high degree redundancy of sensing data for enhancing the performance of distributed sensing by image processing for removing noise and increasing the signal-to-noise ratio (SNR) of noisy measurements. Compared with 2D image denoising methods, BM3D-SAPCA method searches similar 2D image blocks and stacks them together in 3D arrays, which takes full advantage of the high level of similitude and redundancy contained on the multidimensional information to denoise. We find that the BM3D-SAPCA method can effectively suppresses noise aggravation along with an increasing of the sensing distance. Without modifying the hardware system of OFDR, we achieve a distributed strain sensing with a 5 cm spatial resolution, a 2 μϵ strain resolution on a 200 m all grating fiber. We compare the performance of distributed strain sensing by BM3D-SAPCA with Gaussian filter, wavelet denoising (WD) and non-local mean filter (NLM) using the same data. The mean maximal strain measurement error at loaded strain areas is reduced from 2.3791 μϵ to 0.6545 μϵ by BM3D-SAPCA. These mean errors by Gaussian filter, NLM and WD are 1.1177 μϵ, 1.6668 μϵ and 1.9721 μϵ, respectively. The mean standard deviations of strain measurement in eight repeat experiments is reduced from 1.5221 μϵ to 0.3134 μϵ after noise reduction by BM3D-SAPCA, which is 79.37% lower than the raw data. The mean standard deviations after noise reduction by Gaussian filter, NLM and WD are decreased by 68.85%, 64.24% and 14.41% respectively.</description><subject>denoising</subject><subject>distributed optical fiber sensing</subject><subject>Error analysis</subject><subject>Image denoising</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Noise reduction</subject><subject>Optical fiber filters</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical frequency</subject><subject>optical frequency domain reflectometry</subject><subject>Principal components analysis</subject><subject>Redundancy</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Spatial resolution</subject><subject>Standard deviation</subject><subject>Strain</subject><subject>Strain measurement</subject><subject>strain sensing</subject><subject>Three dimensional analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAURSdGExHdm7hp4rr1zVens0QQxVQxguvJtH1DSqTFmbLg31uEuHp3ce59ySHklkJCKeiH13yZMGAs4Qw0MDgjAyplFjNG-TkZgOI8zhQTl-QqhDUAFSJTA_Ket80qmtShs02Jf8HXxa7DKlp03tZNtMAm1D3Tx_l08hkV--jxjU_ixehjPIpmG7vqa9i09YG6JhfOfge8Od0h-Zo-LccvcT5_no1HeVwyTbu4slxABkVRVtQVXOlMOCw4t6VFnmlZoaNppdGVkvJMCVHqQqWOilQ6lKriQ3J_3N369meHoTPrdueb_qVhSqZSpqlOewqOVOnbEDw6s_X1xvq9oWAO1kxvzRysmZO1vnJ3rNSI-I9rDSCA8l9-rGZ7</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Pan, Ming</creator><creator>Hua, Peidong</creator><creator>Ding, Zhenyang</creator><creator>Zhu, Dongfang</creator><creator>Liu, Kun</creator><creator>Jiang, Junfeng</creator><creator>Wang, Chenhuan</creator><creator>Guo, Haohan</creator><creator>Zhang, Teng</creator><creator>Li, Sheng</creator><creator>Liu, Tiegen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0483-477X</orcidid><orcidid>https://orcid.org/0000-0003-0393-8451</orcidid><orcidid>https://orcid.org/0000-0003-4141-6961</orcidid><orcidid>https://orcid.org/0000-0003-2460-6851</orcidid><orcidid>https://orcid.org/0000-0002-4657-3395</orcidid></search><sort><creationdate>20221215</creationdate><title>Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising</title><author>Pan, Ming ; Hua, Peidong ; Ding, Zhenyang ; Zhu, Dongfang ; Liu, Kun ; Jiang, Junfeng ; Wang, Chenhuan ; Guo, Haohan ; Zhang, Teng ; Li, Sheng ; Liu, Tiegen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-da34080bbcd1fb37984feb33acae3895def16d9efc5138744c9b76f1465fe57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>denoising</topic><topic>distributed optical fiber sensing</topic><topic>Error analysis</topic><topic>Image denoising</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Noise reduction</topic><topic>Optical fiber filters</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical frequency</topic><topic>optical frequency domain reflectometry</topic><topic>Principal components analysis</topic><topic>Redundancy</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Spatial resolution</topic><topic>Standard deviation</topic><topic>Strain</topic><topic>Strain measurement</topic><topic>strain sensing</topic><topic>Three dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Ming</creatorcontrib><creatorcontrib>Hua, Peidong</creatorcontrib><creatorcontrib>Ding, Zhenyang</creatorcontrib><creatorcontrib>Zhu, Dongfang</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Wang, Chenhuan</creatorcontrib><creatorcontrib>Guo, Haohan</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Tiegen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Ming</au><au>Hua, Peidong</au><au>Ding, Zhenyang</au><au>Zhu, Dongfang</au><au>Liu, Kun</au><au>Jiang, Junfeng</au><au>Wang, Chenhuan</au><au>Guo, Haohan</au><au>Zhang, Teng</au><au>Li, Sheng</au><au>Liu, Tiegen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>40</volume><issue>24</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We present a long distance distributed strain sensing in optical frequency domain reflectometry (OFDR) by shape-adaptive principal component analysis Block-Matching three-dimensional filter (BM3D-SAPCA) image denoising, which uses correlated patterns and high degree redundancy of sensing data for enhancing the performance of distributed sensing by image processing for removing noise and increasing the signal-to-noise ratio (SNR) of noisy measurements. Compared with 2D image denoising methods, BM3D-SAPCA method searches similar 2D image blocks and stacks them together in 3D arrays, which takes full advantage of the high level of similitude and redundancy contained on the multidimensional information to denoise. We find that the BM3D-SAPCA method can effectively suppresses noise aggravation along with an increasing of the sensing distance. Without modifying the hardware system of OFDR, we achieve a distributed strain sensing with a 5 cm spatial resolution, a 2 μϵ strain resolution on a 200 m all grating fiber. We compare the performance of distributed strain sensing by BM3D-SAPCA with Gaussian filter, wavelet denoising (WD) and non-local mean filter (NLM) using the same data. The mean maximal strain measurement error at loaded strain areas is reduced from 2.3791 μϵ to 0.6545 μϵ by BM3D-SAPCA. These mean errors by Gaussian filter, NLM and WD are 1.1177 μϵ, 1.6668 μϵ and 1.9721 μϵ, respectively. The mean standard deviations of strain measurement in eight repeat experiments is reduced from 1.5221 μϵ to 0.3134 μϵ after noise reduction by BM3D-SAPCA, which is 79.37% lower than the raw data. The mean standard deviations after noise reduction by Gaussian filter, NLM and WD are decreased by 68.85%, 64.24% and 14.41% respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3209020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0483-477X</orcidid><orcidid>https://orcid.org/0000-0003-0393-8451</orcidid><orcidid>https://orcid.org/0000-0003-4141-6961</orcidid><orcidid>https://orcid.org/0000-0003-2460-6851</orcidid><orcidid>https://orcid.org/0000-0002-4657-3395</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-12, Vol.40 (24), p.1-9 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9900401 |
source | IEEE Electronic Library (IEL) |
subjects | denoising distributed optical fiber sensing Error analysis Image denoising Image enhancement Image filters Image processing Noise reduction Optical fiber filters Optical fiber sensors Optical fibers Optical frequency optical frequency domain reflectometry Principal components analysis Redundancy Signal processing Signal to noise ratio Spatial resolution Standard deviation Strain Strain measurement strain sensing Three dimensional analysis |
title | Long Distance Distributed Strain Sensing in OFDR by BM3D-SAPCA Image Denoising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Distance%20Distributed%20Strain%20Sensing%20in%20OFDR%20by%20BM3D-SAPCA%20Image%20Denoising&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Pan,%20Ming&rft.date=2022-12-15&rft.volume=40&rft.issue=24&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3209020&rft_dat=%3Cproquest_RIE%3E2756556696%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756556696&rft_id=info:pmid/&rft_ieee_id=9900401&rfr_iscdi=true |