An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges

An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2022-11, Vol.43 (11), p.1-1
Hauptverfasser: Xing, Qian, Lai, Junhua, Ye, Yuxin, Jiao, Binbin, Zhang, Guohe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE electron device letters
container_volume 43
creator Xing, Qian
Lai, Junhua
Ye, Yuxin
Jiao, Binbin
Zhang, Guohe
description An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.
doi_str_mv 10.1109/LED.2022.3208840
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9900357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9900357</ieee_id><sourcerecordid>2728570618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYjuTdw0cT3Yz5nOkiAqCSAJ7JtOp8WSmSm2DAn_3hKIq7c59773DgDPGI0wRuXbfPo-IoiQESVICIZuwABzLjLEc3oLBqhgOKMY5ffgIcYdQpixgg3AftzBWbsP_mhquPo5RadVAxe-Ng2c-C662gTXbeHCBe2zpeo8XCfCwKm1Rh8itD7AZd8m6hxcu7Zv1MH5DnoLVy6ozsGj0n3fwq3qtyY-gjurmmiernMINh_TzeQrm39_zibjeaYJwYesosxUNUJU5bRiZW41LxkjAmtdVkJVtbGCC1ULUilOKC7zite25JXIC4UtHYLXS2167bc38SB3vg9d2ihJQQQvUI5FotCF0sHHGIyV--BaFU4SI3nWKpNWedYqr1pT5OUSccaYf7ws06m8oH-IQXQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570618</pqid></control><display><type>article</type><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</creator><creatorcontrib>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</creatorcontrib><description>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3208840</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Heat ; Heat sinks ; Heat transfer ; Mathematical models ; micro-nano scale effect ; Microelectromechanical systems ; Numerical models ; Phonons ; Pirani vacuum gauge ; Process parameters ; Scattering ; Sensitivity ; Silicon ; TCAD model ; thermal conductivity ; Thermal resistance ; Vacuum gages</subject><ispartof>IEEE electron device letters, 2022-11, Vol.43 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</citedby><cites>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</cites><orcidid>0000-0001-8092-8009 ; 0000-0003-0406-7408 ; 0000-0003-3610-8286 ; 0000-0003-0840-5785 ; 0000-0002-9435-2933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9900357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9900357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Qian</creatorcontrib><creatorcontrib>Lai, Junhua</creatorcontrib><creatorcontrib>Ye, Yuxin</creatorcontrib><creatorcontrib>Jiao, Binbin</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</description><subject>Design optimization</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>micro-nano scale effect</subject><subject>Microelectromechanical systems</subject><subject>Numerical models</subject><subject>Phonons</subject><subject>Pirani vacuum gauge</subject><subject>Process parameters</subject><subject>Scattering</subject><subject>Sensitivity</subject><subject>Silicon</subject><subject>TCAD model</subject><subject>thermal conductivity</subject><subject>Thermal resistance</subject><subject>Vacuum gages</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYjuTdw0cT3Yz5nOkiAqCSAJ7JtOp8WSmSm2DAn_3hKIq7c59773DgDPGI0wRuXbfPo-IoiQESVICIZuwABzLjLEc3oLBqhgOKMY5ffgIcYdQpixgg3AftzBWbsP_mhquPo5RadVAxe-Ng2c-C662gTXbeHCBe2zpeo8XCfCwKm1Rh8itD7AZd8m6hxcu7Zv1MH5DnoLVy6ozsGj0n3fwq3qtyY-gjurmmiernMINh_TzeQrm39_zibjeaYJwYesosxUNUJU5bRiZW41LxkjAmtdVkJVtbGCC1ULUilOKC7zite25JXIC4UtHYLXS2167bc38SB3vg9d2ihJQQQvUI5FotCF0sHHGIyV--BaFU4SI3nWKpNWedYqr1pT5OUSccaYf7ws06m8oH-IQXQV</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Xing, Qian</creator><creator>Lai, Junhua</creator><creator>Ye, Yuxin</creator><creator>Jiao, Binbin</creator><creator>Zhang, Guohe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8092-8009</orcidid><orcidid>https://orcid.org/0000-0003-0406-7408</orcidid><orcidid>https://orcid.org/0000-0003-3610-8286</orcidid><orcidid>https://orcid.org/0000-0003-0840-5785</orcidid><orcidid>https://orcid.org/0000-0002-9435-2933</orcidid></search><sort><creationdate>20221101</creationdate><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><author>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>micro-nano scale effect</topic><topic>Microelectromechanical systems</topic><topic>Numerical models</topic><topic>Phonons</topic><topic>Pirani vacuum gauge</topic><topic>Process parameters</topic><topic>Scattering</topic><topic>Sensitivity</topic><topic>Silicon</topic><topic>TCAD model</topic><topic>thermal conductivity</topic><topic>Thermal resistance</topic><topic>Vacuum gages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Qian</creatorcontrib><creatorcontrib>Lai, Junhua</creatorcontrib><creatorcontrib>Ye, Yuxin</creatorcontrib><creatorcontrib>Jiao, Binbin</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Qian</au><au>Lai, Junhua</au><au>Ye, Yuxin</au><au>Jiao, Binbin</au><au>Zhang, Guohe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>43</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3208840</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8092-8009</orcidid><orcidid>https://orcid.org/0000-0003-0406-7408</orcidid><orcidid>https://orcid.org/0000-0003-3610-8286</orcidid><orcidid>https://orcid.org/0000-0003-0840-5785</orcidid><orcidid>https://orcid.org/0000-0002-9435-2933</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2022-11, Vol.43 (11), p.1-1
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9900357
source IEEE Electronic Library (IEL)
subjects Design optimization
Heat
Heat sinks
Heat transfer
Mathematical models
micro-nano scale effect
Microelectromechanical systems
Numerical models
Phonons
Pirani vacuum gauge
Process parameters
Scattering
Sensitivity
Silicon
TCAD model
thermal conductivity
Thermal resistance
Vacuum gages
title An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Physical%20Model%20Considering%20Mirco-Nano%20Scale%20Effects%20for%20Numerical%20Simulation%20of%20Pirani%20vacuum%20gauges&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Xing,%20Qian&rft.date=2022-11-01&rft.volume=43&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3208840&rft_dat=%3Cproquest_RIE%3E2728570618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570618&rft_id=info:pmid/&rft_ieee_id=9900357&rfr_iscdi=true