An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges
An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published e...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2022-11, Vol.43 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE electron device letters |
container_volume | 43 |
creator | Xing, Qian Lai, Junhua Ye, Yuxin Jiao, Binbin Zhang, Guohe |
description | An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device. |
doi_str_mv | 10.1109/LED.2022.3208840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9900357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9900357</ieee_id><sourcerecordid>2728570618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYjuTdw0cT3Yz5nOkiAqCSAJ7JtOp8WSmSm2DAn_3hKIq7c59773DgDPGI0wRuXbfPo-IoiQESVICIZuwABzLjLEc3oLBqhgOKMY5ffgIcYdQpixgg3AftzBWbsP_mhquPo5RadVAxe-Ng2c-C662gTXbeHCBe2zpeo8XCfCwKm1Rh8itD7AZd8m6hxcu7Zv1MH5DnoLVy6ozsGj0n3fwq3qtyY-gjurmmiernMINh_TzeQrm39_zibjeaYJwYesosxUNUJU5bRiZW41LxkjAmtdVkJVtbGCC1ULUilOKC7zite25JXIC4UtHYLXS2167bc38SB3vg9d2ihJQQQvUI5FotCF0sHHGIyV--BaFU4SI3nWKpNWedYqr1pT5OUSccaYf7ws06m8oH-IQXQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728570618</pqid></control><display><type>article</type><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</creator><creatorcontrib>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</creatorcontrib><description>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3208840</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Heat ; Heat sinks ; Heat transfer ; Mathematical models ; micro-nano scale effect ; Microelectromechanical systems ; Numerical models ; Phonons ; Pirani vacuum gauge ; Process parameters ; Scattering ; Sensitivity ; Silicon ; TCAD model ; thermal conductivity ; Thermal resistance ; Vacuum gages</subject><ispartof>IEEE electron device letters, 2022-11, Vol.43 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</citedby><cites>FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</cites><orcidid>0000-0001-8092-8009 ; 0000-0003-0406-7408 ; 0000-0003-3610-8286 ; 0000-0003-0840-5785 ; 0000-0002-9435-2933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9900357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9900357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Qian</creatorcontrib><creatorcontrib>Lai, Junhua</creatorcontrib><creatorcontrib>Ye, Yuxin</creatorcontrib><creatorcontrib>Jiao, Binbin</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</description><subject>Design optimization</subject><subject>Heat</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>micro-nano scale effect</subject><subject>Microelectromechanical systems</subject><subject>Numerical models</subject><subject>Phonons</subject><subject>Pirani vacuum gauge</subject><subject>Process parameters</subject><subject>Scattering</subject><subject>Sensitivity</subject><subject>Silicon</subject><subject>TCAD model</subject><subject>thermal conductivity</subject><subject>Thermal resistance</subject><subject>Vacuum gages</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYjuTdw0cT3Yz5nOkiAqCSAJ7JtOp8WSmSm2DAn_3hKIq7c59773DgDPGI0wRuXbfPo-IoiQESVICIZuwABzLjLEc3oLBqhgOKMY5ffgIcYdQpixgg3AftzBWbsP_mhquPo5RadVAxe-Ng2c-C662gTXbeHCBe2zpeo8XCfCwKm1Rh8itD7AZd8m6hxcu7Zv1MH5DnoLVy6ozsGj0n3fwq3qtyY-gjurmmiernMINh_TzeQrm39_zibjeaYJwYesosxUNUJU5bRiZW41LxkjAmtdVkJVtbGCC1ULUilOKC7zite25JXIC4UtHYLXS2167bc38SB3vg9d2ihJQQQvUI5FotCF0sHHGIyV--BaFU4SI3nWKpNWedYqr1pT5OUSccaYf7ws06m8oH-IQXQV</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Xing, Qian</creator><creator>Lai, Junhua</creator><creator>Ye, Yuxin</creator><creator>Jiao, Binbin</creator><creator>Zhang, Guohe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8092-8009</orcidid><orcidid>https://orcid.org/0000-0003-0406-7408</orcidid><orcidid>https://orcid.org/0000-0003-3610-8286</orcidid><orcidid>https://orcid.org/0000-0003-0840-5785</orcidid><orcidid>https://orcid.org/0000-0002-9435-2933</orcidid></search><sort><creationdate>20221101</creationdate><title>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</title><author>Xing, Qian ; Lai, Junhua ; Ye, Yuxin ; Jiao, Binbin ; Zhang, Guohe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-b34ebd003a63b496fc5944281cc9b8abdef858ad82ba523196b5df95b867a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>Heat</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>micro-nano scale effect</topic><topic>Microelectromechanical systems</topic><topic>Numerical models</topic><topic>Phonons</topic><topic>Pirani vacuum gauge</topic><topic>Process parameters</topic><topic>Scattering</topic><topic>Sensitivity</topic><topic>Silicon</topic><topic>TCAD model</topic><topic>thermal conductivity</topic><topic>Thermal resistance</topic><topic>Vacuum gages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Qian</creatorcontrib><creatorcontrib>Lai, Junhua</creatorcontrib><creatorcontrib>Ye, Yuxin</creatorcontrib><creatorcontrib>Jiao, Binbin</creatorcontrib><creatorcontrib>Zhang, Guohe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Qian</au><au>Lai, Junhua</au><au>Ye, Yuxin</au><au>Jiao, Binbin</au><au>Zhang, Guohe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>43</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>An improved physical model was proposed for accurate electrothermal modeling Pirani vacuum gauges (PVG) by accounting for the micro-nano scale effects of heat transfer in sensitive elements and the non-negligible corner heat dissipation from multiple heat sinks. This model is verified by published experimental data and can reveal the influences of geometrical, physical and process parameters, such as device dimensional size, temperature and doping concentrations, on the micro-nano scale heat transfer process, which is a great consideration for microelectromechanical systems (MEMS) PVG designing. Although the model is initially envisaged for MEMS PVG, it could be straightforwardly adopted for the thermal sensors with silicon heaters. Finally, the characteristics of PVG were comprehensively investigated based on the presented model validated by the experimental data. The results show that expanding the area ratio of heat sinks to heater and the thermal resistance ratio of heater to gas is an effective design idea to optimise the maximum sensitivity and central pressure of device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3208840</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8092-8009</orcidid><orcidid>https://orcid.org/0000-0003-0406-7408</orcidid><orcidid>https://orcid.org/0000-0003-3610-8286</orcidid><orcidid>https://orcid.org/0000-0003-0840-5785</orcidid><orcidid>https://orcid.org/0000-0002-9435-2933</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2022-11, Vol.43 (11), p.1-1 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_9900357 |
source | IEEE Electronic Library (IEL) |
subjects | Design optimization Heat Heat sinks Heat transfer Mathematical models micro-nano scale effect Microelectromechanical systems Numerical models Phonons Pirani vacuum gauge Process parameters Scattering Sensitivity Silicon TCAD model thermal conductivity Thermal resistance Vacuum gages |
title | An Improved Physical Model Considering Mirco-Nano Scale Effects for Numerical Simulation of Pirani vacuum gauges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Physical%20Model%20Considering%20Mirco-Nano%20Scale%20Effects%20for%20Numerical%20Simulation%20of%20Pirani%20vacuum%20gauges&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Xing,%20Qian&rft.date=2022-11-01&rft.volume=43&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3208840&rft_dat=%3Cproquest_RIE%3E2728570618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728570618&rft_id=info:pmid/&rft_ieee_id=9900357&rfr_iscdi=true |