Can point-cloud based neural networks learn fingerprint variability?

Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sollinger, Dominik, Jochl, Robert, Kirchgasser, Simon, Uhl, Andreas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Sollinger, Dominik
Jochl, Robert
Kirchgasser, Simon
Uhl, Andreas
description Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.
doi_str_mv 10.1109/BIOSIG55365.2022.9897050
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9897050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897050</ieee_id><sourcerecordid>9897050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-3e106f9b33dab235bf69dd81aa7e454c89d26cec8297ee153e57df14434634643</originalsourceid><addsrcrecordid>eNotj89KxDAYxKMguK77BF7yAq35-yU5iVZdCwt7UM9L2nyVaG2XtKvs2xtwh4HfZRhmCKGclZwzd_tQb1_rtdYSdCmYEKWzzjDNzsgVB9DKAIA6JwsO3BRagb0kq2n6ZFmGCW3sgjxWfqD7MQ5z0fbjIdDGTxjogIfk-4z5d0xfE-3Rp4F2cfjAtE85TX98ir6JfZyPd9fkovP9hKsTl-T9-emteik223Vd3W-KyKWcC4mcQecaKYNvhNRNBy4Ey703qLRqrQsCWmytcAaRa4nahI4rJRVkK7kkN_-9ERF3ece3T8fd6bT8A1DnTP4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Can point-cloud based neural networks learn fingerprint variability?</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sollinger, Dominik ; Jochl, Robert ; Kirchgasser, Simon ; Uhl, Andreas</creator><creatorcontrib>Sollinger, Dominik ; Jochl, Robert ; Kirchgasser, Simon ; Uhl, Andreas</creatorcontrib><description>Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.</description><identifier>EISSN: 1617-5468</identifier><identifier>EISBN: 1665476664</identifier><identifier>EISBN: 9781665476669</identifier><identifier>DOI: 10.1109/BIOSIG55365.2022.9897050</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; deep learning ; Degradation ; fingerprint ageing ; Fingerprint recognition ; fingerprint similarity ; fingerprint variability ; Image matching ; Measurement ; Neural networks ; point-cloud ; Process control</subject><ispartof>2022 International Conference of the Biometrics Special Interest Group (BIOSIG), 2022, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Sollinger, Dominik</creatorcontrib><creatorcontrib>Jochl, Robert</creatorcontrib><creatorcontrib>Kirchgasser, Simon</creatorcontrib><creatorcontrib>Uhl, Andreas</creatorcontrib><title>Can point-cloud based neural networks learn fingerprint variability?</title><title>2022 International Conference of the Biometrics Special Interest Group (BIOSIG)</title><addtitle>BIOSIG55365</addtitle><description>Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.</description><subject>Aging</subject><subject>deep learning</subject><subject>Degradation</subject><subject>fingerprint ageing</subject><subject>Fingerprint recognition</subject><subject>fingerprint similarity</subject><subject>fingerprint variability</subject><subject>Image matching</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>point-cloud</subject><subject>Process control</subject><issn>1617-5468</issn><isbn>1665476664</isbn><isbn>9781665476669</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj89KxDAYxKMguK77BF7yAq35-yU5iVZdCwt7UM9L2nyVaG2XtKvs2xtwh4HfZRhmCKGclZwzd_tQb1_rtdYSdCmYEKWzzjDNzsgVB9DKAIA6JwsO3BRagb0kq2n6ZFmGCW3sgjxWfqD7MQ5z0fbjIdDGTxjogIfk-4z5d0xfE-3Rp4F2cfjAtE85TX98ir6JfZyPd9fkovP9hKsTl-T9-emteik223Vd3W-KyKWcC4mcQecaKYNvhNRNBy4Ey703qLRqrQsCWmytcAaRa4nahI4rJRVkK7kkN_-9ERF3ece3T8fd6bT8A1DnTP4</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sollinger, Dominik</creator><creator>Jochl, Robert</creator><creator>Kirchgasser, Simon</creator><creator>Uhl, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202209</creationdate><title>Can point-cloud based neural networks learn fingerprint variability?</title><author>Sollinger, Dominik ; Jochl, Robert ; Kirchgasser, Simon ; Uhl, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-3e106f9b33dab235bf69dd81aa7e454c89d26cec8297ee153e57df14434634643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>deep learning</topic><topic>Degradation</topic><topic>fingerprint ageing</topic><topic>Fingerprint recognition</topic><topic>fingerprint similarity</topic><topic>fingerprint variability</topic><topic>Image matching</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>point-cloud</topic><topic>Process control</topic><toplevel>online_resources</toplevel><creatorcontrib>Sollinger, Dominik</creatorcontrib><creatorcontrib>Jochl, Robert</creatorcontrib><creatorcontrib>Kirchgasser, Simon</creatorcontrib><creatorcontrib>Uhl, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sollinger, Dominik</au><au>Jochl, Robert</au><au>Kirchgasser, Simon</au><au>Uhl, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Can point-cloud based neural networks learn fingerprint variability?</atitle><btitle>2022 International Conference of the Biometrics Special Interest Group (BIOSIG)</btitle><stitle>BIOSIG55365</stitle><date>2022-09</date><risdate>2022</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>1617-5468</eissn><eisbn>1665476664</eisbn><eisbn>9781665476669</eisbn><abstract>Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.</abstract><pub>IEEE</pub><doi>10.1109/BIOSIG55365.2022.9897050</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1617-5468
ispartof 2022 International Conference of the Biometrics Special Interest Group (BIOSIG), 2022, p.1-8
issn 1617-5468
language eng
recordid cdi_ieee_primary_9897050
source EZB-FREE-00999 freely available EZB journals
subjects Aging
deep learning
Degradation
fingerprint ageing
Fingerprint recognition
fingerprint similarity
fingerprint variability
Image matching
Measurement
Neural networks
point-cloud
Process control
title Can point-cloud based neural networks learn fingerprint variability?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Can%20point-cloud%20based%20neural%20networks%20learn%20fingerprint%20variability?&rft.btitle=2022%20International%20Conference%20of%20the%20Biometrics%20Special%20Interest%20Group%20(BIOSIG)&rft.au=Sollinger,%20Dominik&rft.date=2022-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=1617-5468&rft_id=info:doi/10.1109/BIOSIG55365.2022.9897050&rft_dat=%3Cieee%3E9897050%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=1665476664&rft.eisbn_list=9781665476669&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9897050&rfr_iscdi=true