Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data
The vast progress in synthetic image synthesis enables the generation of facial images in high resolution and photorealism. In biometric applications, the main motivation for using synthetic data is to solve the shortage of publicly-available biometric data while reducing privacy risks when processi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Grimmer, Marcel Zhang, Haoyu Ramachandra, Raghavendra Raja, Kiran Busch, Christoph |
description | The vast progress in synthetic image synthesis enables the generation of facial images in high resolution and photorealism. In biometric applications, the main motivation for using synthetic data is to solve the shortage of publicly-available biometric data while reducing privacy risks when processing such sensitive information. These advantages are exploited in this work by simulating human face ageing with recent face age modification algorithms to generate mated samples, thereby studying the impact of ageing on the performance of an open-source biometric recognition system. Further, a real dataset is used to evaluate the effects of short-term ageing, comparing the biometric performance to the synthetic domain. The main findings indicate that short-term ageing in the range of 1-5 years has only minor effects on the general recognition performance. However, the correct verification of mated faces with long-term age differences beyond 20 years poses still a significant challenge and requires further investigation. |
doi_str_mv | 10.1109/BIOSIG55365.2022.9897043 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9897043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9897043</ieee_id><sourcerecordid>9897043</sourcerecordid><originalsourceid>FETCH-LOGICAL-i253t-9090b6f8aaf462a79decb0f2cd419b84ecedd61e3f8a81a545bcd8211d196e3e3</originalsourceid><addsrcrecordid>eNotkM1Kw0AcxFdBsNY-gZd9gcT9zq63WG0NFCq2nstm8992pUlKsiDx6Ru1cxmG-TGHQQhTklJKzONzsd4USym5kikjjKVGm4wIfoXuqFJSZEopcY0mVNEskULpWzTr-y8yKiNMZnqCYBtqwP4YoMfl8ITzxh6Hn9DscTwALuqTdRG3Hi-sA5zv4bdpm7_yA1y7b0IMY36HzrddbZuR-g7xgDdDMzIxOPxio71HN94ee5hdfIo-F6_b-VuyWi-Leb5KApM8JoYYUiqvrfVCMZuZClxJPHOVoKbUAhxUlaLAR0RTK4UsXaUZpRU1CjjwKXr43w0AsDt1obbdsLu8ws-_vlix</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grimmer, Marcel ; Zhang, Haoyu ; Ramachandra, Raghavendra ; Raja, Kiran ; Busch, Christoph</creator><creatorcontrib>Grimmer, Marcel ; Zhang, Haoyu ; Ramachandra, Raghavendra ; Raja, Kiran ; Busch, Christoph</creatorcontrib><description>The vast progress in synthetic image synthesis enables the generation of facial images in high resolution and photorealism. In biometric applications, the main motivation for using synthetic data is to solve the shortage of publicly-available biometric data while reducing privacy risks when processing such sensitive information. These advantages are exploited in this work by simulating human face ageing with recent face age modification algorithms to generate mated samples, thereby studying the impact of ageing on the performance of an open-source biometric recognition system. Further, a real dataset is used to evaluate the effects of short-term ageing, comparing the biometric performance to the synthetic domain. The main findings indicate that short-term ageing in the range of 1-5 years has only minor effects on the general recognition performance. However, the correct verification of mated faces with long-term age differences beyond 20 years poses still a significant challenge and requires further investigation.</description><identifier>EISSN: 1617-5468</identifier><identifier>EISBN: 1665476664</identifier><identifier>EISBN: 9781665476669</identifier><identifier>DOI: 10.1109/BIOSIG55365.2022.9897043</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data privacy ; Face Age Modification ; Face recognition ; Image recognition ; Image resolution ; Image synthesis ; Photorealism ; Synthetic Data ; Three-dimensional displays</subject><ispartof>2022 International Conference of the Biometrics Special Interest Group (BIOSIG), 2022, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902</link.rule.ids></links><search><creatorcontrib>Grimmer, Marcel</creatorcontrib><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Ramachandra, Raghavendra</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><title>Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data</title><title>2022 International Conference of the Biometrics Special Interest Group (BIOSIG)</title><addtitle>BIOSIG55365</addtitle><description>The vast progress in synthetic image synthesis enables the generation of facial images in high resolution and photorealism. In biometric applications, the main motivation for using synthetic data is to solve the shortage of publicly-available biometric data while reducing privacy risks when processing such sensitive information. These advantages are exploited in this work by simulating human face ageing with recent face age modification algorithms to generate mated samples, thereby studying the impact of ageing on the performance of an open-source biometric recognition system. Further, a real dataset is used to evaluate the effects of short-term ageing, comparing the biometric performance to the synthetic domain. The main findings indicate that short-term ageing in the range of 1-5 years has only minor effects on the general recognition performance. However, the correct verification of mated faces with long-term age differences beyond 20 years poses still a significant challenge and requires further investigation.</description><subject>Data privacy</subject><subject>Face Age Modification</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Image synthesis</subject><subject>Photorealism</subject><subject>Synthetic Data</subject><subject>Three-dimensional displays</subject><issn>1617-5468</issn><isbn>1665476664</isbn><isbn>9781665476669</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1Kw0AcxFdBsNY-gZd9gcT9zq63WG0NFCq2nstm8992pUlKsiDx6Ru1cxmG-TGHQQhTklJKzONzsd4USym5kikjjKVGm4wIfoXuqFJSZEopcY0mVNEskULpWzTr-y8yKiNMZnqCYBtqwP4YoMfl8ITzxh6Hn9DscTwALuqTdRG3Hi-sA5zv4bdpm7_yA1y7b0IMY36HzrddbZuR-g7xgDdDMzIxOPxio71HN94ee5hdfIo-F6_b-VuyWi-Leb5KApM8JoYYUiqvrfVCMZuZClxJPHOVoKbUAhxUlaLAR0RTK4UsXaUZpRU1CjjwKXr43w0AsDt1obbdsLu8ws-_vlix</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Grimmer, Marcel</creator><creator>Zhang, Haoyu</creator><creator>Ramachandra, Raghavendra</creator><creator>Raja, Kiran</creator><creator>Busch, Christoph</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220101</creationdate><title>Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data</title><author>Grimmer, Marcel ; Zhang, Haoyu ; Ramachandra, Raghavendra ; Raja, Kiran ; Busch, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i253t-9090b6f8aaf462a79decb0f2cd419b84ecedd61e3f8a81a545bcd8211d196e3e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data privacy</topic><topic>Face Age Modification</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Image synthesis</topic><topic>Photorealism</topic><topic>Synthetic Data</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Grimmer, Marcel</creatorcontrib><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Ramachandra, Raghavendra</creatorcontrib><creatorcontrib>Raja, Kiran</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimmer, Marcel</au><au>Zhang, Haoyu</au><au>Ramachandra, Raghavendra</au><au>Raja, Kiran</au><au>Busch, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data</atitle><btitle>2022 International Conference of the Biometrics Special Interest Group (BIOSIG)</btitle><stitle>BIOSIG55365</stitle><date>2022-01-01</date><risdate>2022</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1617-5468</eissn><eisbn>1665476664</eisbn><eisbn>9781665476669</eisbn><abstract>The vast progress in synthetic image synthesis enables the generation of facial images in high resolution and photorealism. In biometric applications, the main motivation for using synthetic data is to solve the shortage of publicly-available biometric data while reducing privacy risks when processing such sensitive information. These advantages are exploited in this work by simulating human face ageing with recent face age modification algorithms to generate mated samples, thereby studying the impact of ageing on the performance of an open-source biometric recognition system. Further, a real dataset is used to evaluate the effects of short-term ageing, comparing the biometric performance to the synthetic domain. The main findings indicate that short-term ageing in the range of 1-5 years has only minor effects on the general recognition performance. However, the correct verification of mated faces with long-term age differences beyond 20 years poses still a significant challenge and requires further investigation.</abstract><pub>IEEE</pub><doi>10.1109/BIOSIG55365.2022.9897043</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1617-5468 |
ispartof | 2022 International Conference of the Biometrics Special Interest Group (BIOSIG), 2022, p.1-6 |
issn | 1617-5468 |
language | eng |
recordid | cdi_ieee_primary_9897043 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Data privacy Face Age Modification Face recognition Image recognition Image resolution Image synthesis Photorealism Synthetic Data Three-dimensional displays |
title | Time flies by: Analyzing the Impact of Face Ageing on the Recognition Performance with Synthetic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20flies%20by:%20Analyzing%20the%20Impact%20of%20Face%20Ageing%20on%20the%20Recognition%20Performance%20with%20Synthetic%20Data&rft.btitle=2022%20International%20Conference%20of%20the%20Biometrics%20Special%20Interest%20Group%20(BIOSIG)&rft.au=Grimmer,%20Marcel&rft.date=2022-01-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1617-5468&rft_id=info:doi/10.1109/BIOSIG55365.2022.9897043&rft_dat=%3Cieee%3E9897043%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=1665476664&rft.eisbn_list=9781665476669&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9897043&rfr_iscdi=true |