Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology
In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexi...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2023-02, Vol.41 (3), p.822-831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 3 |
container_start_page | 822 |
container_title | Journal of lightwave technology |
container_volume | 41 |
creator | Fang, Jian Li, Yaowen Ji, Philip N. Wang, Ting |
description | In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring. |
doi_str_mv | 10.1109/JLT.2022.3208451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9896929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896929</ieee_id><sourcerecordid>2770777199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKt3wcuC56352N0kx9JaP1jowfYcstnZNqUmNdki9a93ty2Cpxlm3nsz_BC6J3hECJZP7-ViRDGlI0axyHJygQYkz0VKKWGXaIA5Y6ngNLtGNzFuMCZZJvgAfU-Dd5BMoQXTWu8S7eqk9EZv7Y8-DpbRulXy7NbaGaiTma0gpPNda00yNn4f--YDXPTh6J3a2AZb7dtO-2_fpyzArJ3f-tXhFl01ehvh7lyHaDl7Xkxe03L-8jYZl6npHm_TRmDBBSWSCyxrYIYSTTMpoMINa4pKQI1NVhc5LbTWDYiCGiJqUQkpMZGCDdHjKXcX_NceYqs2fh9cd1JRzjHnnEjZqfBJZYKPMUCjdsF-6nBQBKser-rwqh6vOuPtLA8niwWAP7kUspBUsl8K0XcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770777199</pqid></control><display><type>article</type><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</creator><creatorcontrib>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</creatorcontrib><description>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3208451</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic array processing ; Acoustic mapping ; Acoustic sensors ; Acoustics ; Airborne sensing ; Arrays ; Data integration ; Data management ; distributed acoustic sensing ; drone detection ; Drones ; Fiber optics ; fiber-optic acoustic sensor ; Field tests ; Localization ; Location awareness ; Microphones ; Optical fiber sensors ; Optical fibers ; Optics ; Remote sensing ; Root-mean-square errors ; Sensitivity ; Signal processing ; Sound ; Sound fields ; Synchronism ; unmanned aerial vehicle ; Vibration monitoring ; Waveforms</subject><ispartof>Journal of lightwave technology, 2023-02, Vol.41 (3), p.822-831</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</citedby><cites>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</cites><orcidid>0000-0002-9647-7211 ; 0000-0002-9870-2136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Jian</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Ji, Philip N.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</description><subject>Acoustic array processing</subject><subject>Acoustic mapping</subject><subject>Acoustic sensors</subject><subject>Acoustics</subject><subject>Airborne sensing</subject><subject>Arrays</subject><subject>Data integration</subject><subject>Data management</subject><subject>distributed acoustic sensing</subject><subject>drone detection</subject><subject>Drones</subject><subject>Fiber optics</subject><subject>fiber-optic acoustic sensor</subject><subject>Field tests</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Microphones</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Sensitivity</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Sound fields</subject><subject>Synchronism</subject><subject>unmanned aerial vehicle</subject><subject>Vibration monitoring</subject><subject>Waveforms</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkM1LAzEQxYMoWKt3wcuC56352N0kx9JaP1jowfYcstnZNqUmNdki9a93ty2Cpxlm3nsz_BC6J3hECJZP7-ViRDGlI0axyHJygQYkz0VKKWGXaIA5Y6ngNLtGNzFuMCZZJvgAfU-Dd5BMoQXTWu8S7eqk9EZv7Y8-DpbRulXy7NbaGaiTma0gpPNda00yNn4f--YDXPTh6J3a2AZb7dtO-2_fpyzArJ3f-tXhFl01ehvh7lyHaDl7Xkxe03L-8jYZl6npHm_TRmDBBSWSCyxrYIYSTTMpoMINa4pKQI1NVhc5LbTWDYiCGiJqUQkpMZGCDdHjKXcX_NceYqs2fh9cd1JRzjHnnEjZqfBJZYKPMUCjdsF-6nBQBKser-rwqh6vOuPtLA8niwWAP7kUspBUsl8K0XcM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fang, Jian</creator><creator>Li, Yaowen</creator><creator>Ji, Philip N.</creator><creator>Wang, Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9647-7211</orcidid><orcidid>https://orcid.org/0000-0002-9870-2136</orcidid></search><sort><creationdate>20230201</creationdate><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><author>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic array processing</topic><topic>Acoustic mapping</topic><topic>Acoustic sensors</topic><topic>Acoustics</topic><topic>Airborne sensing</topic><topic>Arrays</topic><topic>Data integration</topic><topic>Data management</topic><topic>distributed acoustic sensing</topic><topic>drone detection</topic><topic>Drones</topic><topic>Fiber optics</topic><topic>fiber-optic acoustic sensor</topic><topic>Field tests</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Microphones</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Sensitivity</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Sound fields</topic><topic>Synchronism</topic><topic>unmanned aerial vehicle</topic><topic>Vibration monitoring</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jian</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Ji, Philip N.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Jian</au><au>Li, Yaowen</au><au>Ji, Philip N.</au><au>Wang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><spage>822</spage><epage>831</epage><pages>822-831</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3208451</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9647-7211</orcidid><orcidid>https://orcid.org/0000-0002-9870-2136</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2023-02, Vol.41 (3), p.822-831 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9896929 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic array processing Acoustic mapping Acoustic sensors Acoustics Airborne sensing Arrays Data integration Data management distributed acoustic sensing drone detection Drones Fiber optics fiber-optic acoustic sensor Field tests Localization Location awareness Microphones Optical fiber sensors Optical fibers Optics Remote sensing Root-mean-square errors Sensitivity Signal processing Sound Sound fields Synchronism unmanned aerial vehicle Vibration monitoring Waveforms |
title | Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Detection%20and%20Localization%20Using%20Enhanced%20Fiber-Optic%20Acoustic%20Sensor%20and%20Distributed%20Acoustic%20Sensing%20Technology&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Fang,%20Jian&rft.date=2023-02-01&rft.volume=41&rft.issue=3&rft.spage=822&rft.epage=831&rft.pages=822-831&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3208451&rft_dat=%3Cproquest_RIE%3E2770777199%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770777199&rft_id=info:pmid/&rft_ieee_id=9896929&rfr_iscdi=true |