Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology

In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2023-02, Vol.41 (3), p.822-831
Hauptverfasser: Fang, Jian, Li, Yaowen, Ji, Philip N., Wang, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 3
container_start_page 822
container_title Journal of lightwave technology
container_volume 41
creator Fang, Jian
Li, Yaowen
Ji, Philip N.
Wang, Ting
description In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.
doi_str_mv 10.1109/JLT.2022.3208451
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9896929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9896929</ieee_id><sourcerecordid>2770777199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKt3wcuC56352N0kx9JaP1jowfYcstnZNqUmNdki9a93ty2Cpxlm3nsz_BC6J3hECJZP7-ViRDGlI0axyHJygQYkz0VKKWGXaIA5Y6ngNLtGNzFuMCZZJvgAfU-Dd5BMoQXTWu8S7eqk9EZv7Y8-DpbRulXy7NbaGaiTma0gpPNda00yNn4f--YDXPTh6J3a2AZb7dtO-2_fpyzArJ3f-tXhFl01ehvh7lyHaDl7Xkxe03L-8jYZl6npHm_TRmDBBSWSCyxrYIYSTTMpoMINa4pKQI1NVhc5LbTWDYiCGiJqUQkpMZGCDdHjKXcX_NceYqs2fh9cd1JRzjHnnEjZqfBJZYKPMUCjdsF-6nBQBKser-rwqh6vOuPtLA8niwWAP7kUspBUsl8K0XcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770777199</pqid></control><display><type>article</type><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</creator><creatorcontrib>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</creatorcontrib><description>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3208451</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic array processing ; Acoustic mapping ; Acoustic sensors ; Acoustics ; Airborne sensing ; Arrays ; Data integration ; Data management ; distributed acoustic sensing ; drone detection ; Drones ; Fiber optics ; fiber-optic acoustic sensor ; Field tests ; Localization ; Location awareness ; Microphones ; Optical fiber sensors ; Optical fibers ; Optics ; Remote sensing ; Root-mean-square errors ; Sensitivity ; Signal processing ; Sound ; Sound fields ; Synchronism ; unmanned aerial vehicle ; Vibration monitoring ; Waveforms</subject><ispartof>Journal of lightwave technology, 2023-02, Vol.41 (3), p.822-831</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</citedby><cites>FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</cites><orcidid>0000-0002-9647-7211 ; 0000-0002-9870-2136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9896929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9896929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Jian</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Ji, Philip N.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</description><subject>Acoustic array processing</subject><subject>Acoustic mapping</subject><subject>Acoustic sensors</subject><subject>Acoustics</subject><subject>Airborne sensing</subject><subject>Arrays</subject><subject>Data integration</subject><subject>Data management</subject><subject>distributed acoustic sensing</subject><subject>drone detection</subject><subject>Drones</subject><subject>Fiber optics</subject><subject>fiber-optic acoustic sensor</subject><subject>Field tests</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Microphones</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Sensitivity</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Sound fields</subject><subject>Synchronism</subject><subject>unmanned aerial vehicle</subject><subject>Vibration monitoring</subject><subject>Waveforms</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkM1LAzEQxYMoWKt3wcuC56352N0kx9JaP1jowfYcstnZNqUmNdki9a93ty2Cpxlm3nsz_BC6J3hECJZP7-ViRDGlI0axyHJygQYkz0VKKWGXaIA5Y6ngNLtGNzFuMCZZJvgAfU-Dd5BMoQXTWu8S7eqk9EZv7Y8-DpbRulXy7NbaGaiTma0gpPNda00yNn4f--YDXPTh6J3a2AZb7dtO-2_fpyzArJ3f-tXhFl01ehvh7lyHaDl7Xkxe03L-8jYZl6npHm_TRmDBBSWSCyxrYIYSTTMpoMINa4pKQI1NVhc5LbTWDYiCGiJqUQkpMZGCDdHjKXcX_NceYqs2fh9cd1JRzjHnnEjZqfBJZYKPMUCjdsF-6nBQBKser-rwqh6vOuPtLA8niwWAP7kUspBUsl8K0XcM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fang, Jian</creator><creator>Li, Yaowen</creator><creator>Ji, Philip N.</creator><creator>Wang, Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9647-7211</orcidid><orcidid>https://orcid.org/0000-0002-9870-2136</orcidid></search><sort><creationdate>20230201</creationdate><title>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</title><author>Fang, Jian ; Li, Yaowen ; Ji, Philip N. ; Wang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f808782197809de3c21a2498eb0f3f6b8ed0c4d6526aaafe862c18d8b89901983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic array processing</topic><topic>Acoustic mapping</topic><topic>Acoustic sensors</topic><topic>Acoustics</topic><topic>Airborne sensing</topic><topic>Arrays</topic><topic>Data integration</topic><topic>Data management</topic><topic>distributed acoustic sensing</topic><topic>drone detection</topic><topic>Drones</topic><topic>Fiber optics</topic><topic>fiber-optic acoustic sensor</topic><topic>Field tests</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Microphones</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Sensitivity</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Sound fields</topic><topic>Synchronism</topic><topic>unmanned aerial vehicle</topic><topic>Vibration monitoring</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jian</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Ji, Philip N.</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Jian</au><au>Li, Yaowen</au><au>Ji, Philip N.</au><au>Wang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><spage>822</spage><epage>831</epage><pages>822-831</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/μPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing. We demonstrate the field test of drone detection and localization by concatenating four FOASs as a sensing array and capturing the airborne sound remotely through DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3208451</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9647-7211</orcidid><orcidid>https://orcid.org/0000-0002-9870-2136</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2023-02, Vol.41 (3), p.822-831
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9896929
source IEEE Electronic Library (IEL)
subjects Acoustic array processing
Acoustic mapping
Acoustic sensors
Acoustics
Airborne sensing
Arrays
Data integration
Data management
distributed acoustic sensing
drone detection
Drones
Fiber optics
fiber-optic acoustic sensor
Field tests
Localization
Location awareness
Microphones
Optical fiber sensors
Optical fibers
Optics
Remote sensing
Root-mean-square errors
Sensitivity
Signal processing
Sound
Sound fields
Synchronism
unmanned aerial vehicle
Vibration monitoring
Waveforms
title Drone Detection and Localization Using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Detection%20and%20Localization%20Using%20Enhanced%20Fiber-Optic%20Acoustic%20Sensor%20and%20Distributed%20Acoustic%20Sensing%20Technology&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Fang,%20Jian&rft.date=2023-02-01&rft.volume=41&rft.issue=3&rft.spage=822&rft.epage=831&rft.pages=822-831&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3208451&rft_dat=%3Cproquest_RIE%3E2770777199%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770777199&rft_id=info:pmid/&rft_ieee_id=9896929&rfr_iscdi=true