A fast algorithm to cluster high dimensional basket data

Clustering is a data mining problem that has received significant attention by the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. The article introduces a fast algorithm to cluster large binary data sets where data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ordonez, C., Omiecinski, E., Ezquerra, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue
container_start_page 633
container_title
container_volume
creator Ordonez, C.
Omiecinski, E.
Ezquerra, N.
description Clustering is a data mining problem that has received significant attention by the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. The article introduces a fast algorithm to cluster large binary data sets where data points have high dimensionality and most of their coordinates are zero. This is the case with basket data transactions containing items, that can be represented as sparse binary vectors with very high dimensionality. An experimental section shows performance, advantages and limitations of the proposed approach.
doi_str_mv 10.1109/ICDM.2001.989586
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_989586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>989586</ieee_id><sourcerecordid>989586</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-5e08fd988230f8a38a7f8d0a06aff5fdfc80add2b16c5e7714c0c28398cca3393</originalsourceid><addsrcrecordid>eNotj8tOwzAQAC0hJFDJHXHyD6TsxnW8PlbhVakVFzhXWz8aQ9Kg2Bz4e5DKXOY20ghxi7BEBHu_6R52ywYAl5aspvZCVNYQmNZqRLR4JaqcP-CPlUZozbWgtYyci-ThOM2p9KMsk3TDdy5hln069tKnMZxymk48yAPnz1Ck58I34jLykEP174V4f3p8617q7evzpltv64SmKbUOQNFbokZBJFbEJpIHhpZj1NFHR8DeNwdsnQ7G4MqBa0hZco6Vsmoh7s7dFELYf81p5Plnf95Tv2jIRU8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast algorithm to cluster high dimensional basket data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ordonez, C. ; Omiecinski, E. ; Ezquerra, N.</creator><creatorcontrib>Ordonez, C. ; Omiecinski, E. ; Ezquerra, N.</creatorcontrib><description>Clustering is a data mining problem that has received significant attention by the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. The article introduces a fast algorithm to cluster large binary data sets where data points have high dimensionality and most of their coordinates are zero. This is the case with basket data transactions containing items, that can be represented as sparse binary vectors with very high dimensionality. An experimental section shows performance, advantages and limitations of the proposed approach.</description><identifier>ISBN: 9780769511191</identifier><identifier>ISBN: 0769511198</identifier><identifier>DOI: 10.1109/ICDM.2001.989586</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Clustering algorithms ; Data mining ; Educational institutions ; Maximum likelihood estimation ; Multidimensional systems ; Partitioning algorithms ; Sparse matrices ; Statistical analysis</subject><ispartof>Proceedings 2001 IEEE International Conference on Data Mining, 2001, p.633-636</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/989586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/989586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><creatorcontrib>Ezquerra, N.</creatorcontrib><title>A fast algorithm to cluster high dimensional basket data</title><title>Proceedings 2001 IEEE International Conference on Data Mining</title><addtitle>ICDM</addtitle><description>Clustering is a data mining problem that has received significant attention by the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. The article introduces a fast algorithm to cluster large binary data sets where data points have high dimensionality and most of their coordinates are zero. This is the case with basket data transactions containing items, that can be represented as sparse binary vectors with very high dimensionality. An experimental section shows performance, advantages and limitations of the proposed approach.</description><subject>Association rules</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Educational institutions</subject><subject>Maximum likelihood estimation</subject><subject>Multidimensional systems</subject><subject>Partitioning algorithms</subject><subject>Sparse matrices</subject><subject>Statistical analysis</subject><isbn>9780769511191</isbn><isbn>0769511198</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAQAC0hJFDJHXHyD6TsxnW8PlbhVakVFzhXWz8aQ9Kg2Bz4e5DKXOY20ghxi7BEBHu_6R52ywYAl5aspvZCVNYQmNZqRLR4JaqcP-CPlUZozbWgtYyci-ThOM2p9KMsk3TDdy5hln069tKnMZxymk48yAPnz1Ck58I34jLykEP174V4f3p8617q7evzpltv64SmKbUOQNFbokZBJFbEJpIHhpZj1NFHR8DeNwdsnQ7G4MqBa0hZco6Vsmoh7s7dFELYf81p5Plnf95Tv2jIRU8</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Ordonez, C.</creator><creator>Omiecinski, E.</creator><creator>Ezquerra, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>A fast algorithm to cluster high dimensional basket data</title><author>Ordonez, C. ; Omiecinski, E. ; Ezquerra, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-5e08fd988230f8a38a7f8d0a06aff5fdfc80add2b16c5e7714c0c28398cca3393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Association rules</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Educational institutions</topic><topic>Maximum likelihood estimation</topic><topic>Multidimensional systems</topic><topic>Partitioning algorithms</topic><topic>Sparse matrices</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><creatorcontrib>Ezquerra, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ordonez, C.</au><au>Omiecinski, E.</au><au>Ezquerra, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast algorithm to cluster high dimensional basket data</atitle><btitle>Proceedings 2001 IEEE International Conference on Data Mining</btitle><stitle>ICDM</stitle><date>2001</date><risdate>2001</risdate><spage>633</spage><epage>636</epage><pages>633-636</pages><isbn>9780769511191</isbn><isbn>0769511198</isbn><abstract>Clustering is a data mining problem that has received significant attention by the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. The article introduces a fast algorithm to cluster large binary data sets where data points have high dimensionality and most of their coordinates are zero. This is the case with basket data transactions containing items, that can be represented as sparse binary vectors with very high dimensionality. An experimental section shows performance, advantages and limitations of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2001.989586</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769511191
ispartof Proceedings 2001 IEEE International Conference on Data Mining, 2001, p.633-636
issn
language eng
recordid cdi_ieee_primary_989586
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Association rules
Clustering algorithms
Data mining
Educational institutions
Maximum likelihood estimation
Multidimensional systems
Partitioning algorithms
Sparse matrices
Statistical analysis
title A fast algorithm to cluster high dimensional basket data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20algorithm%20to%20cluster%20high%20dimensional%20basket%20data&rft.btitle=Proceedings%202001%20IEEE%20International%20Conference%20on%20Data%20Mining&rft.au=Ordonez,%20C.&rft.date=2001&rft.spage=633&rft.epage=636&rft.pages=633-636&rft.isbn=9780769511191&rft.isbn_list=0769511198&rft_id=info:doi/10.1109/ICDM.2001.989586&rft_dat=%3Cieee_6IE%3E989586%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=989586&rfr_iscdi=true