A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology
A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation op...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2022-11, Vol.57 (11), p.3258-3273 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3273 |
---|---|
container_issue | 11 |
container_start_page | 3258 |
container_title | IEEE journal of solid-state circuits |
container_volume | 57 |
creator | Chakraborty, Sudipto Frank, David J. Tien, Kevin Rosno, Pat Yeck, Mark Glick, Joseph A. Robertazzi, Raphael Richetta, Ray Bulzacchelli, John F. Underwood, Devin Ramirez, Daniel Yilma, Dereje Davies, Andrew Joshi, Rajiv V. Chambers, Shawn D. Lekuch, Scott Inoue, Ken Wisnieff, Dorothy Baks, Christian W. Bethune, Donald S. Timmerwilke, John Fox, Thomas Song, Peilin Johnson, Blake R. Gaucher, Brian P. Friedman, Daniel J. |
description | A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion {I}/{Q} mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon T_{1} and T_{2} coherence times were 75.7 and 73 \mu \text{s} , respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW. |
doi_str_mv | 10.1109/JSSC.2022.3201775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9895434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895434</ieee_id><sourcerecordid>2727044326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zk482uRzFTyZTOsG72qWJdqzJTFvG_r0dG14dXnje98CD0DXQCQDVdy95nk0YZWzCGYU0lSdoBFIqAin_PEUjSkERzSg9RxdtuxqiEApG6GuKs7gLJHud53gWtuQtbG3EuW1qMu274EMT-hYvYunbJnj83i_rDudd2VmcBd_FsF4PfO0xCOIb_FD7h_sFXljz48M6fO8u0Zkr1629Ot4x-hiA7InM5o_P2XRGDJe6Izpx1lRccZOW0tDKgEippFxo5SqhU6fAJJDQigktHYcElpA4Q5lVS-dkxcfo9rC7ieG3t21XrEIf_fCyYClLqRCcJQMFB8rE0LbRumIT66aMuwJosRdZ7EUWe5HFUeTQuTl0amvtP6-VloIL_gcW_21p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727044326</pqid></control><display><type>article</type><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</creator><creatorcontrib>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</creatorcontrib><description><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3201775</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Amplitude modulation ; Arbitrary waveform generator (AWG) ; Clifford gate ; CMOS ; Controllers ; cryoelectronics ; Energy dissipation ; FinFET ; Josephson junctions ; Logic gates ; low power ; Process control ; quantum error correction (QEC) ; Qubit ; qubit state controller (QSC) ; Radio frequency ; Room temperature ; single sideband (SSB) ; T1 coherence ; T2 coherence ; Time-frequency analysis ; transmitter</subject><ispartof>IEEE journal of solid-state circuits, 2022-11, Vol.57 (11), p.3258-3273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</citedby><cites>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</cites><orcidid>0000-0001-9884-5850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9895434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Tien, Kevin</creatorcontrib><creatorcontrib>Rosno, Pat</creatorcontrib><creatorcontrib>Yeck, Mark</creatorcontrib><creatorcontrib>Glick, Joseph A.</creatorcontrib><creatorcontrib>Robertazzi, Raphael</creatorcontrib><creatorcontrib>Richetta, Ray</creatorcontrib><creatorcontrib>Bulzacchelli, John F.</creatorcontrib><creatorcontrib>Underwood, Devin</creatorcontrib><creatorcontrib>Ramirez, Daniel</creatorcontrib><creatorcontrib>Yilma, Dereje</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Joshi, Rajiv V.</creatorcontrib><creatorcontrib>Chambers, Shawn D.</creatorcontrib><creatorcontrib>Lekuch, Scott</creatorcontrib><creatorcontrib>Inoue, Ken</creatorcontrib><creatorcontrib>Wisnieff, Dorothy</creatorcontrib><creatorcontrib>Baks, Christian W.</creatorcontrib><creatorcontrib>Bethune, Donald S.</creatorcontrib><creatorcontrib>Timmerwilke, John</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Johnson, Blake R.</creatorcontrib><creatorcontrib>Gaucher, Brian P.</creatorcontrib><creatorcontrib>Friedman, Daniel J.</creatorcontrib><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></description><subject>Active control</subject><subject>Amplitude modulation</subject><subject>Arbitrary waveform generator (AWG)</subject><subject>Clifford gate</subject><subject>CMOS</subject><subject>Controllers</subject><subject>cryoelectronics</subject><subject>Energy dissipation</subject><subject>FinFET</subject><subject>Josephson junctions</subject><subject>Logic gates</subject><subject>low power</subject><subject>Process control</subject><subject>quantum error correction (QEC)</subject><subject>Qubit</subject><subject>qubit state controller (QSC)</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>single sideband (SSB)</subject><subject>T1 coherence</subject><subject>T2 coherence</subject><subject>Time-frequency analysis</subject><subject>transmitter</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zk482uRzFTyZTOsG72qWJdqzJTFvG_r0dG14dXnje98CD0DXQCQDVdy95nk0YZWzCGYU0lSdoBFIqAin_PEUjSkERzSg9RxdtuxqiEApG6GuKs7gLJHud53gWtuQtbG3EuW1qMu274EMT-hYvYunbJnj83i_rDudd2VmcBd_FsF4PfO0xCOIb_FD7h_sFXljz48M6fO8u0Zkr1629Ot4x-hiA7InM5o_P2XRGDJe6Izpx1lRccZOW0tDKgEippFxo5SqhU6fAJJDQigktHYcElpA4Q5lVS-dkxcfo9rC7ieG3t21XrEIf_fCyYClLqRCcJQMFB8rE0LbRumIT66aMuwJosRdZ7EUWe5HFUeTQuTl0amvtP6-VloIL_gcW_21p</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chakraborty, Sudipto</creator><creator>Frank, David J.</creator><creator>Tien, Kevin</creator><creator>Rosno, Pat</creator><creator>Yeck, Mark</creator><creator>Glick, Joseph A.</creator><creator>Robertazzi, Raphael</creator><creator>Richetta, Ray</creator><creator>Bulzacchelli, John F.</creator><creator>Underwood, Devin</creator><creator>Ramirez, Daniel</creator><creator>Yilma, Dereje</creator><creator>Davies, Andrew</creator><creator>Joshi, Rajiv V.</creator><creator>Chambers, Shawn D.</creator><creator>Lekuch, Scott</creator><creator>Inoue, Ken</creator><creator>Wisnieff, Dorothy</creator><creator>Baks, Christian W.</creator><creator>Bethune, Donald S.</creator><creator>Timmerwilke, John</creator><creator>Fox, Thomas</creator><creator>Song, Peilin</creator><creator>Johnson, Blake R.</creator><creator>Gaucher, Brian P.</creator><creator>Friedman, Daniel J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9884-5850</orcidid></search><sort><creationdate>20221101</creationdate><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><author>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Amplitude modulation</topic><topic>Arbitrary waveform generator (AWG)</topic><topic>Clifford gate</topic><topic>CMOS</topic><topic>Controllers</topic><topic>cryoelectronics</topic><topic>Energy dissipation</topic><topic>FinFET</topic><topic>Josephson junctions</topic><topic>Logic gates</topic><topic>low power</topic><topic>Process control</topic><topic>quantum error correction (QEC)</topic><topic>Qubit</topic><topic>qubit state controller (QSC)</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>single sideband (SSB)</topic><topic>T1 coherence</topic><topic>T2 coherence</topic><topic>Time-frequency analysis</topic><topic>transmitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Tien, Kevin</creatorcontrib><creatorcontrib>Rosno, Pat</creatorcontrib><creatorcontrib>Yeck, Mark</creatorcontrib><creatorcontrib>Glick, Joseph A.</creatorcontrib><creatorcontrib>Robertazzi, Raphael</creatorcontrib><creatorcontrib>Richetta, Ray</creatorcontrib><creatorcontrib>Bulzacchelli, John F.</creatorcontrib><creatorcontrib>Underwood, Devin</creatorcontrib><creatorcontrib>Ramirez, Daniel</creatorcontrib><creatorcontrib>Yilma, Dereje</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Joshi, Rajiv V.</creatorcontrib><creatorcontrib>Chambers, Shawn D.</creatorcontrib><creatorcontrib>Lekuch, Scott</creatorcontrib><creatorcontrib>Inoue, Ken</creatorcontrib><creatorcontrib>Wisnieff, Dorothy</creatorcontrib><creatorcontrib>Baks, Christian W.</creatorcontrib><creatorcontrib>Bethune, Donald S.</creatorcontrib><creatorcontrib>Timmerwilke, John</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Johnson, Blake R.</creatorcontrib><creatorcontrib>Gaucher, Brian P.</creatorcontrib><creatorcontrib>Friedman, Daniel J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chakraborty, Sudipto</au><au>Frank, David J.</au><au>Tien, Kevin</au><au>Rosno, Pat</au><au>Yeck, Mark</au><au>Glick, Joseph A.</au><au>Robertazzi, Raphael</au><au>Richetta, Ray</au><au>Bulzacchelli, John F.</au><au>Underwood, Devin</au><au>Ramirez, Daniel</au><au>Yilma, Dereje</au><au>Davies, Andrew</au><au>Joshi, Rajiv V.</au><au>Chambers, Shawn D.</au><au>Lekuch, Scott</au><au>Inoue, Ken</au><au>Wisnieff, Dorothy</au><au>Baks, Christian W.</au><au>Bethune, Donald S.</au><au>Timmerwilke, John</au><au>Fox, Thomas</au><au>Song, Peilin</au><au>Johnson, Blake R.</au><au>Gaucher, Brian P.</au><au>Friedman, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>57</volume><issue>11</issue><spage>3258</spage><epage>3273</epage><pages>3258-3273</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3201775</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9884-5850</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2022-11, Vol.57 (11), p.3258-3273 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_9895434 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Amplitude modulation Arbitrary waveform generator (AWG) Clifford gate CMOS Controllers cryoelectronics Energy dissipation FinFET Josephson junctions Logic gates low power Process control quantum error correction (QEC) Qubit qubit state controller (QSC) Radio frequency Room temperature single sideband (SSB) T1 coherence T2 coherence Time-frequency analysis transmitter |
title | A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cryo-CMOS%20Low-Power%20Semi-Autonomous%20Transmon%20Qubit%20State%20Controller%20in%2014-nm%20FinFET%20Technology&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chakraborty,%20Sudipto&rft.date=2022-11-01&rft.volume=57&rft.issue=11&rft.spage=3258&rft.epage=3273&rft.pages=3258-3273&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3201775&rft_dat=%3Cproquest_RIE%3E2727044326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727044326&rft_id=info:pmid/&rft_ieee_id=9895434&rfr_iscdi=true |