A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology

A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2022-11, Vol.57 (11), p.3258-3273
Hauptverfasser: Chakraborty, Sudipto, Frank, David J., Tien, Kevin, Rosno, Pat, Yeck, Mark, Glick, Joseph A., Robertazzi, Raphael, Richetta, Ray, Bulzacchelli, John F., Underwood, Devin, Ramirez, Daniel, Yilma, Dereje, Davies, Andrew, Joshi, Rajiv V., Chambers, Shawn D., Lekuch, Scott, Inoue, Ken, Wisnieff, Dorothy, Baks, Christian W., Bethune, Donald S., Timmerwilke, John, Fox, Thomas, Song, Peilin, Johnson, Blake R., Gaucher, Brian P., Friedman, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3273
container_issue 11
container_start_page 3258
container_title IEEE journal of solid-state circuits
container_volume 57
creator Chakraborty, Sudipto
Frank, David J.
Tien, Kevin
Rosno, Pat
Yeck, Mark
Glick, Joseph A.
Robertazzi, Raphael
Richetta, Ray
Bulzacchelli, John F.
Underwood, Devin
Ramirez, Daniel
Yilma, Dereje
Davies, Andrew
Joshi, Rajiv V.
Chambers, Shawn D.
Lekuch, Scott
Inoue, Ken
Wisnieff, Dorothy
Baks, Christian W.
Bethune, Donald S.
Timmerwilke, John
Fox, Thomas
Song, Peilin
Johnson, Blake R.
Gaucher, Brian P.
Friedman, Daniel J.
description A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion {I}/{Q} mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon T_{1} and T_{2} coherence times were 75.7 and 73 \mu \text{s} , respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.
doi_str_mv 10.1109/JSSC.2022.3201775
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9895434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895434</ieee_id><sourcerecordid>2727044326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zk482uRzFTyZTOsG72qWJdqzJTFvG_r0dG14dXnje98CD0DXQCQDVdy95nk0YZWzCGYU0lSdoBFIqAin_PEUjSkERzSg9RxdtuxqiEApG6GuKs7gLJHud53gWtuQtbG3EuW1qMu274EMT-hYvYunbJnj83i_rDudd2VmcBd_FsF4PfO0xCOIb_FD7h_sFXljz48M6fO8u0Zkr1629Ot4x-hiA7InM5o_P2XRGDJe6Izpx1lRccZOW0tDKgEippFxo5SqhU6fAJJDQigktHYcElpA4Q5lVS-dkxcfo9rC7ieG3t21XrEIf_fCyYClLqRCcJQMFB8rE0LbRumIT66aMuwJosRdZ7EUWe5HFUeTQuTl0amvtP6-VloIL_gcW_21p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727044326</pqid></control><display><type>article</type><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</creator><creatorcontrib>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</creatorcontrib><description><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3201775</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Amplitude modulation ; Arbitrary waveform generator (AWG) ; Clifford gate ; CMOS ; Controllers ; cryoelectronics ; Energy dissipation ; FinFET ; Josephson junctions ; Logic gates ; low power ; Process control ; quantum error correction (QEC) ; Qubit ; qubit state controller (QSC) ; Radio frequency ; Room temperature ; single sideband (SSB) ; T1 coherence ; T2 coherence ; Time-frequency analysis ; transmitter</subject><ispartof>IEEE journal of solid-state circuits, 2022-11, Vol.57 (11), p.3258-3273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</citedby><cites>FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</cites><orcidid>0000-0001-9884-5850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9895434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Tien, Kevin</creatorcontrib><creatorcontrib>Rosno, Pat</creatorcontrib><creatorcontrib>Yeck, Mark</creatorcontrib><creatorcontrib>Glick, Joseph A.</creatorcontrib><creatorcontrib>Robertazzi, Raphael</creatorcontrib><creatorcontrib>Richetta, Ray</creatorcontrib><creatorcontrib>Bulzacchelli, John F.</creatorcontrib><creatorcontrib>Underwood, Devin</creatorcontrib><creatorcontrib>Ramirez, Daniel</creatorcontrib><creatorcontrib>Yilma, Dereje</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Joshi, Rajiv V.</creatorcontrib><creatorcontrib>Chambers, Shawn D.</creatorcontrib><creatorcontrib>Lekuch, Scott</creatorcontrib><creatorcontrib>Inoue, Ken</creatorcontrib><creatorcontrib>Wisnieff, Dorothy</creatorcontrib><creatorcontrib>Baks, Christian W.</creatorcontrib><creatorcontrib>Bethune, Donald S.</creatorcontrib><creatorcontrib>Timmerwilke, John</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Johnson, Blake R.</creatorcontrib><creatorcontrib>Gaucher, Brian P.</creatorcontrib><creatorcontrib>Friedman, Daniel J.</creatorcontrib><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></description><subject>Active control</subject><subject>Amplitude modulation</subject><subject>Arbitrary waveform generator (AWG)</subject><subject>Clifford gate</subject><subject>CMOS</subject><subject>Controllers</subject><subject>cryoelectronics</subject><subject>Energy dissipation</subject><subject>FinFET</subject><subject>Josephson junctions</subject><subject>Logic gates</subject><subject>low power</subject><subject>Process control</subject><subject>quantum error correction (QEC)</subject><subject>Qubit</subject><subject>qubit state controller (QSC)</subject><subject>Radio frequency</subject><subject>Room temperature</subject><subject>single sideband (SSB)</subject><subject>T1 coherence</subject><subject>T2 coherence</subject><subject>Time-frequency analysis</subject><subject>transmitter</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeJ2Zk482uRzFTyZTOsG72qWJdqzJTFvG_r0dG14dXnje98CD0DXQCQDVdy95nk0YZWzCGYU0lSdoBFIqAin_PEUjSkERzSg9RxdtuxqiEApG6GuKs7gLJHud53gWtuQtbG3EuW1qMu274EMT-hYvYunbJnj83i_rDudd2VmcBd_FsF4PfO0xCOIb_FD7h_sFXljz48M6fO8u0Zkr1629Ot4x-hiA7InM5o_P2XRGDJe6Izpx1lRccZOW0tDKgEippFxo5SqhU6fAJJDQigktHYcElpA4Q5lVS-dkxcfo9rC7ieG3t21XrEIf_fCyYClLqRCcJQMFB8rE0LbRumIT66aMuwJosRdZ7EUWe5HFUeTQuTl0amvtP6-VloIL_gcW_21p</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chakraborty, Sudipto</creator><creator>Frank, David J.</creator><creator>Tien, Kevin</creator><creator>Rosno, Pat</creator><creator>Yeck, Mark</creator><creator>Glick, Joseph A.</creator><creator>Robertazzi, Raphael</creator><creator>Richetta, Ray</creator><creator>Bulzacchelli, John F.</creator><creator>Underwood, Devin</creator><creator>Ramirez, Daniel</creator><creator>Yilma, Dereje</creator><creator>Davies, Andrew</creator><creator>Joshi, Rajiv V.</creator><creator>Chambers, Shawn D.</creator><creator>Lekuch, Scott</creator><creator>Inoue, Ken</creator><creator>Wisnieff, Dorothy</creator><creator>Baks, Christian W.</creator><creator>Bethune, Donald S.</creator><creator>Timmerwilke, John</creator><creator>Fox, Thomas</creator><creator>Song, Peilin</creator><creator>Johnson, Blake R.</creator><creator>Gaucher, Brian P.</creator><creator>Friedman, Daniel J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9884-5850</orcidid></search><sort><creationdate>20221101</creationdate><title>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</title><author>Chakraborty, Sudipto ; Frank, David J. ; Tien, Kevin ; Rosno, Pat ; Yeck, Mark ; Glick, Joseph A. ; Robertazzi, Raphael ; Richetta, Ray ; Bulzacchelli, John F. ; Underwood, Devin ; Ramirez, Daniel ; Yilma, Dereje ; Davies, Andrew ; Joshi, Rajiv V. ; Chambers, Shawn D. ; Lekuch, Scott ; Inoue, Ken ; Wisnieff, Dorothy ; Baks, Christian W. ; Bethune, Donald S. ; Timmerwilke, John ; Fox, Thomas ; Song, Peilin ; Johnson, Blake R. ; Gaucher, Brian P. ; Friedman, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-96fecd383c7a5c0dc1470503498fd497f81c6160d2495f3161b16fc02e8bff5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Amplitude modulation</topic><topic>Arbitrary waveform generator (AWG)</topic><topic>Clifford gate</topic><topic>CMOS</topic><topic>Controllers</topic><topic>cryoelectronics</topic><topic>Energy dissipation</topic><topic>FinFET</topic><topic>Josephson junctions</topic><topic>Logic gates</topic><topic>low power</topic><topic>Process control</topic><topic>quantum error correction (QEC)</topic><topic>Qubit</topic><topic>qubit state controller (QSC)</topic><topic>Radio frequency</topic><topic>Room temperature</topic><topic>single sideband (SSB)</topic><topic>T1 coherence</topic><topic>T2 coherence</topic><topic>Time-frequency analysis</topic><topic>transmitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sudipto</creatorcontrib><creatorcontrib>Frank, David J.</creatorcontrib><creatorcontrib>Tien, Kevin</creatorcontrib><creatorcontrib>Rosno, Pat</creatorcontrib><creatorcontrib>Yeck, Mark</creatorcontrib><creatorcontrib>Glick, Joseph A.</creatorcontrib><creatorcontrib>Robertazzi, Raphael</creatorcontrib><creatorcontrib>Richetta, Ray</creatorcontrib><creatorcontrib>Bulzacchelli, John F.</creatorcontrib><creatorcontrib>Underwood, Devin</creatorcontrib><creatorcontrib>Ramirez, Daniel</creatorcontrib><creatorcontrib>Yilma, Dereje</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Joshi, Rajiv V.</creatorcontrib><creatorcontrib>Chambers, Shawn D.</creatorcontrib><creatorcontrib>Lekuch, Scott</creatorcontrib><creatorcontrib>Inoue, Ken</creatorcontrib><creatorcontrib>Wisnieff, Dorothy</creatorcontrib><creatorcontrib>Baks, Christian W.</creatorcontrib><creatorcontrib>Bethune, Donald S.</creatorcontrib><creatorcontrib>Timmerwilke, John</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Song, Peilin</creatorcontrib><creatorcontrib>Johnson, Blake R.</creatorcontrib><creatorcontrib>Gaucher, Brian P.</creatorcontrib><creatorcontrib>Friedman, Daniel J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chakraborty, Sudipto</au><au>Frank, David J.</au><au>Tien, Kevin</au><au>Rosno, Pat</au><au>Yeck, Mark</au><au>Glick, Joseph A.</au><au>Robertazzi, Raphael</au><au>Richetta, Ray</au><au>Bulzacchelli, John F.</au><au>Underwood, Devin</au><au>Ramirez, Daniel</au><au>Yilma, Dereje</au><au>Davies, Andrew</au><au>Joshi, Rajiv V.</au><au>Chambers, Shawn D.</au><au>Lekuch, Scott</au><au>Inoue, Ken</au><au>Wisnieff, Dorothy</au><au>Baks, Christian W.</au><au>Bethune, Donald S.</au><au>Timmerwilke, John</au><au>Fox, Thomas</au><au>Song, Peilin</au><au>Johnson, Blake R.</au><au>Gaucher, Brian P.</au><au>Friedman, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>57</volume><issue>11</issue><spage>3258</spage><epage>3273</epage><pages>3258-3273</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[A scalable, non-multiplexed cryogenic 14-nm FinFET quantum bit (qubit) state controller (QSC) for use in the semi-autonomous control of superconducting transmon qubits is reported. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low-power current-mode single sideband upconversion <inline-formula> <tex-math notation="LaTeX">{I}/{Q} </tex-math></inline-formula> mixer-based RF arbitrary waveform generator (AWG). Implemented in the 14-nm CMOS FinFET technology, the QSC generates control signals in its target 4.5-5.5-GHz-frequency range, achieving an spurious free dynamic range (SFDR) > 50 dB for a signal bandwidth of 500 MHz. With the controller operating in the 4 K stage of a cryostat and connected to a transmon qubit in the cryostat's millikelvin stage, measured transmon <inline-formula> <tex-math notation="LaTeX">T_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> coherence times were 75.7 and 73 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, in each case comparable to results achieved using conventional room temperature (RT) controls. In further tests with transmons, a qubit-limited error rate of 7.76 × 10−4 per Clifford gate is achieved, again comparable to the results achieved using RT controls. The QSC's maximum RF output power is −18 dBm, and power dissipation per qubit under active control is 23 mW.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3201775</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9884-5850</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2022-11, Vol.57 (11), p.3258-3273
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_9895434
source IEEE Electronic Library (IEL)
subjects Active control
Amplitude modulation
Arbitrary waveform generator (AWG)
Clifford gate
CMOS
Controllers
cryoelectronics
Energy dissipation
FinFET
Josephson junctions
Logic gates
low power
Process control
quantum error correction (QEC)
Qubit
qubit state controller (QSC)
Radio frequency
Room temperature
single sideband (SSB)
T1 coherence
T2 coherence
Time-frequency analysis
transmitter
title A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cryo-CMOS%20Low-Power%20Semi-Autonomous%20Transmon%20Qubit%20State%20Controller%20in%2014-nm%20FinFET%20Technology&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chakraborty,%20Sudipto&rft.date=2022-11-01&rft.volume=57&rft.issue=11&rft.spage=3258&rft.epage=3273&rft.pages=3258-3273&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3201775&rft_dat=%3Cproquest_RIE%3E2727044326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727044326&rft_id=info:pmid/&rft_ieee_id=9895434&rfr_iscdi=true