Time series segmentation for context recognition in mobile devices

Recognizing the context of use is important in making mobile devices as simple to use as possible. Finding out what the user's situation is can help the device and underlying service in providing an adaptive and personalized user interface. The device can infer parts of the context of the user...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H.T.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recognizing the context of use is important in making mobile devices as simple to use as possible. Finding out what the user's situation is can help the device and underlying service in providing an adaptive and personalized user interface. The device can infer parts of the context of the user from sensor data: the mobile device can include sensors for acceleration, noise level, luminosity, humidity, etc. In this paper we consider context recognition by unsupervised segmentation of time series produced by sensors. Dynamic programming can be used to find segments that minimize the intra-segment variances. While this method produces optimal solutions, it is too slow for long sequences of data. We present and analyze randomized variations of the algorithm. One of them, global iterative replacement or GIR, gives approximately optimal results in a fraction of the time required by dynamic programming. We demonstrate the use of time series segmentation in context recognition for mobile phone applications.
DOI:10.1109/ICDM.2001.989520