Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics

In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-1
Hauptverfasser: Zhou, Jie, Xie, Junhao, Liao, Xingxing, Sun, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Zhou, Jie
Xie, Junhao
Liao, Xingxing
Sun, Chang
description In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.
doi_str_mv 10.1109/TGRS.2022.3205737
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9889740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9889740</ieee_id><sourcerecordid>2719554726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MOU2a5nJWN8WBuE28DGmTSsZsZ5Iivr0dG16dw-H7_wMfIddAJwBU3q3ny9UEKeIkQ8pFJk7ICDgvUpozdkpGFGSeYiHxnFyEsKEUGAcxIi_LrupDTFZbZ1z7mXy41nQ_STmbLpMHG20dXdcm9zpYkwzLW6_b6LY2Wfu-rXUcrquoowvR1eGSnDV6G-zVcY7J--xxXT6li9f5czldpDXKLKam0QJQABdVxTjLAZmkWFuaW0RRS2kMFwjSaIncVACNZDrTDRU257RqsjG5PfTufPfd2xDVput9O7xUQ63knAnMBwoOVO27ELxt1M67L-1_FVC1d6b2ztTemTo6GzI3h4yz1v7zsiikYDT7A9iYZsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719554726</pqid></control><display><type>article</type><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</creator><creatorcontrib>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</creatorcontrib><description>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3205737</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clutter ; Constant false alarm rate ; Depth ; Detection ; Detectors ; False alarms ; Maximum likelihood estimation ; Monte Carlo simulation ; Over-the-horizon radar ; Parameter estimation ; Parameters ; Probability density function ; Probability density functions ; Probability theory ; quantile ; Radar ; Radar detection ; Sensors ; Shape ; skywave over-the-horizon radar ; Statistical analysis ; Statistical methods ; Statistics ; truncated statistics ; Variance analysis ; Weibull clutter</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</citedby><cites>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</cites><orcidid>0000-0003-0672-8791 ; 0000-0002-1935-1842 ; 0000-0001-5077-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9889740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9889740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Liao, Xingxing</creatorcontrib><creatorcontrib>Sun, Chang</creatorcontrib><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</description><subject>Clutter</subject><subject>Constant false alarm rate</subject><subject>Depth</subject><subject>Detection</subject><subject>Detectors</subject><subject>False alarms</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo simulation</subject><subject>Over-the-horizon radar</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>quantile</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Sensors</subject><subject>Shape</subject><subject>skywave over-the-horizon radar</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>truncated statistics</subject><subject>Variance analysis</subject><subject>Weibull clutter</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MOU2a5nJWN8WBuE28DGmTSsZsZ5Iivr0dG16dw-H7_wMfIddAJwBU3q3ny9UEKeIkQ8pFJk7ICDgvUpozdkpGFGSeYiHxnFyEsKEUGAcxIi_LrupDTFZbZ1z7mXy41nQ_STmbLpMHG20dXdcm9zpYkwzLW6_b6LY2Wfu-rXUcrquoowvR1eGSnDV6G-zVcY7J--xxXT6li9f5czldpDXKLKam0QJQABdVxTjLAZmkWFuaW0RRS2kMFwjSaIncVACNZDrTDRU257RqsjG5PfTufPfd2xDVput9O7xUQ63knAnMBwoOVO27ELxt1M67L-1_FVC1d6b2ztTemTo6GzI3h4yz1v7zsiikYDT7A9iYZsI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Jie</creator><creator>Xie, Junhao</creator><creator>Liao, Xingxing</creator><creator>Sun, Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0672-8791</orcidid><orcidid>https://orcid.org/0000-0002-1935-1842</orcidid><orcidid>https://orcid.org/0000-0001-5077-3800</orcidid></search><sort><creationdate>2022</creationdate><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><author>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clutter</topic><topic>Constant false alarm rate</topic><topic>Depth</topic><topic>Detection</topic><topic>Detectors</topic><topic>False alarms</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo simulation</topic><topic>Over-the-horizon radar</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>quantile</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Sensors</topic><topic>Shape</topic><topic>skywave over-the-horizon radar</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>truncated statistics</topic><topic>Variance analysis</topic><topic>Weibull clutter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Liao, Xingxing</creatorcontrib><creatorcontrib>Sun, Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Jie</au><au>Xie, Junhao</au><au>Liao, Xingxing</au><au>Sun, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3205737</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0672-8791</orcidid><orcidid>https://orcid.org/0000-0002-1935-1842</orcidid><orcidid>https://orcid.org/0000-0001-5077-3800</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9889740
source IEEE Electronic Library (IEL)
subjects Clutter
Constant false alarm rate
Depth
Detection
Detectors
False alarms
Maximum likelihood estimation
Monte Carlo simulation
Over-the-horizon radar
Parameter estimation
Parameters
Probability density function
Probability density functions
Probability theory
quantile
Radar
Radar detection
Sensors
Shape
skywave over-the-horizon radar
Statistical analysis
Statistical methods
Statistics
truncated statistics
Variance analysis
Weibull clutter
title Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Sliding%20Window%20CFAR%20Detection%20Based%20on%20Quantile%20Truncated%20Statistics&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhou,%20Jie&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3205737&rft_dat=%3Cproquest_RIE%3E2719554726%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719554726&rft_id=info:pmid/&rft_ieee_id=9889740&rfr_iscdi=true