Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics
In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllabl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Zhou, Jie Xie, Junhao Liao, Xingxing Sun, Chang |
description | In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background. |
doi_str_mv | 10.1109/TGRS.2022.3205737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9889740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9889740</ieee_id><sourcerecordid>2719554726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MOU2a5nJWN8WBuE28DGmTSsZsZ5Iivr0dG16dw-H7_wMfIddAJwBU3q3ny9UEKeIkQ8pFJk7ICDgvUpozdkpGFGSeYiHxnFyEsKEUGAcxIi_LrupDTFZbZ1z7mXy41nQ_STmbLpMHG20dXdcm9zpYkwzLW6_b6LY2Wfu-rXUcrquoowvR1eGSnDV6G-zVcY7J--xxXT6li9f5czldpDXKLKam0QJQABdVxTjLAZmkWFuaW0RRS2kMFwjSaIncVACNZDrTDRU257RqsjG5PfTufPfd2xDVput9O7xUQ63knAnMBwoOVO27ELxt1M67L-1_FVC1d6b2ztTemTo6GzI3h4yz1v7zsiikYDT7A9iYZsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719554726</pqid></control><display><type>article</type><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</creator><creatorcontrib>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</creatorcontrib><description>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3205737</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clutter ; Constant false alarm rate ; Depth ; Detection ; Detectors ; False alarms ; Maximum likelihood estimation ; Monte Carlo simulation ; Over-the-horizon radar ; Parameter estimation ; Parameters ; Probability density function ; Probability density functions ; Probability theory ; quantile ; Radar ; Radar detection ; Sensors ; Shape ; skywave over-the-horizon radar ; Statistical analysis ; Statistical methods ; Statistics ; truncated statistics ; Variance analysis ; Weibull clutter</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</citedby><cites>FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</cites><orcidid>0000-0003-0672-8791 ; 0000-0002-1935-1842 ; 0000-0001-5077-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9889740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9889740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Liao, Xingxing</creatorcontrib><creatorcontrib>Sun, Chang</creatorcontrib><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</description><subject>Clutter</subject><subject>Constant false alarm rate</subject><subject>Depth</subject><subject>Detection</subject><subject>Detectors</subject><subject>False alarms</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo simulation</subject><subject>Over-the-horizon radar</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>quantile</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Sensors</subject><subject>Shape</subject><subject>skywave over-the-horizon radar</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>truncated statistics</subject><subject>Variance analysis</subject><subject>Weibull clutter</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MOU2a5nJWN8WBuE28DGmTSsZsZ5Iivr0dG16dw-H7_wMfIddAJwBU3q3ny9UEKeIkQ8pFJk7ICDgvUpozdkpGFGSeYiHxnFyEsKEUGAcxIi_LrupDTFZbZ1z7mXy41nQ_STmbLpMHG20dXdcm9zpYkwzLW6_b6LY2Wfu-rXUcrquoowvR1eGSnDV6G-zVcY7J--xxXT6li9f5czldpDXKLKam0QJQABdVxTjLAZmkWFuaW0RRS2kMFwjSaIncVACNZDrTDRU257RqsjG5PfTufPfd2xDVput9O7xUQ63knAnMBwoOVO27ELxt1M67L-1_FVC1d6b2ztTemTo6GzI3h4yz1v7zsiikYDT7A9iYZsI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Jie</creator><creator>Xie, Junhao</creator><creator>Liao, Xingxing</creator><creator>Sun, Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0672-8791</orcidid><orcidid>https://orcid.org/0000-0002-1935-1842</orcidid><orcidid>https://orcid.org/0000-0001-5077-3800</orcidid></search><sort><creationdate>2022</creationdate><title>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</title><author>Zhou, Jie ; Xie, Junhao ; Liao, Xingxing ; Sun, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dfa7127157bb4546124902ce06e227c99dd57219da925db11f94a3af07e650bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clutter</topic><topic>Constant false alarm rate</topic><topic>Depth</topic><topic>Detection</topic><topic>Detectors</topic><topic>False alarms</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo simulation</topic><topic>Over-the-horizon radar</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>quantile</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Sensors</topic><topic>Shape</topic><topic>skywave over-the-horizon radar</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>truncated statistics</topic><topic>Variance analysis</topic><topic>Weibull clutter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Liao, Xingxing</creatorcontrib><creatorcontrib>Sun, Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Jie</au><au>Xie, Junhao</au><au>Liao, Xingxing</au><au>Sun, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, the concept of quantile is introduced and elaborately related to the truncation depth, based on which quantile truncated statistics (QTS) is put forward. The QTS gives a reasonable explanation of truncation depth and makes the selection of truncation depth well-founded and controllable. In addition, maximum likelihood estimation based on QTS (QTS-MLE) for the probability density function (PDF) parameters is derived. We start the analysis from Weibull background assuming that the shape parameter is known, and then extend it to the case where the shape parameter is unknown. By analyzing the variance and mean square error (MSE) of the estimated parameters in Weibull background, it is found that QTS-MLE has better estimation performance than the MLE based on truncated statistics (TS-MLE). On this basis, the constant false alarm rate (CFAR) detector based on QTS-MLE, i.e. QTS-CFAR, is proposed. The analytic expressions of the false alarm rate and detection probability of QTS-CFAR are derived under the Weibull background with known shape parameter. The full CFAR characteristics of TS- and QTS-CFAR detectors in Weibull background with unknown shape parameter are proved by invariant theory. Monte Carlo simulations show that QTS-CFAR detector has better anti-interference performance and false alarm control ability in multiple-target environment. Furthermore, the superiority of QTS-CFAR detector is verified by the real data collected by skywave over-the-horizon radar. Finally, we present the expression of QTS-MLE for the scale parameter in the Gamma background.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3205737</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0672-8791</orcidid><orcidid>https://orcid.org/0000-0002-1935-1842</orcidid><orcidid>https://orcid.org/0000-0001-5077-3800</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9889740 |
source | IEEE Electronic Library (IEL) |
subjects | Clutter Constant false alarm rate Depth Detection Detectors False alarms Maximum likelihood estimation Monte Carlo simulation Over-the-horizon radar Parameter estimation Parameters Probability density function Probability density functions Probability theory quantile Radar Radar detection Sensors Shape skywave over-the-horizon radar Statistical analysis Statistical methods Statistics truncated statistics Variance analysis Weibull clutter |
title | Robust Sliding Window CFAR Detection Based on Quantile Truncated Statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Sliding%20Window%20CFAR%20Detection%20Based%20on%20Quantile%20Truncated%20Statistics&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhou,%20Jie&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3205737&rft_dat=%3Cproquest_RIE%3E2719554726%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719554726&rft_id=info:pmid/&rft_ieee_id=9889740&rfr_iscdi=true |