Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety

AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet computing 2022-09, Vol.26 (5), p.76-84
Hauptverfasser: Sheth, Amit, Gaur, Manas, Roy, Kaushik, Venkataraman, Revathy, Khandelwal, Vedant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 5
container_start_page 76
container_title IEEE internet computing
container_volume 26
creator Sheth, Amit
Gaur, Manas
Roy, Kaushik
Venkataraman, Revathy
Khandelwal, Vedant
Sheth, Amit
description AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or well-defined processes set by experts, community, or standards. We characterize these as process knowledge (PK). For example, to diagnose the severity of depression, the AI system should incorporate PK that is part of the clinical decision-making process, such as the Patient Health Questionnaire (PHQ-9). Likewise, a nutritionist's knowledge and dietary guidelines are needed to create food plans for diabetic patients. Furthermore, the BlackBox nature of purely data-reliant statistical AI systems falls short in providing user-understandable explanations, such as what a clinician would need to ensure and document compliance with medical guidelines before relying on a recommendation. Using the examples of mental health and cooking recipes for diabetic patients, we show why, what, and how to incorporate PK along with domain knowledge in machine learning. We discuss methods for infusing PK and present performance evaluation metrics. Support for safety and user-level explainability of the PK-infused learning improves confidence and trust in the AI system.
doi_str_mv 10.1109/MIC.2022.3182349
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9889132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9889132</ieee_id><sourcerecordid>10_1109_MIC_2022_3182349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-fae5740f6c559c970c6758a78c79de54f35f5a6b9ab1174dc44c98a27d7da6483</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWKt3wUt-gKn53CTeSqm6WFGwvQlLmryRlXW3JKu1_96Wlp5mGGbm8CB0zeiIMWrvXsrJiFPOR4IZLqQ9QQNmJSOUCXa69dRYog1l5-gi5y9KqTGcDdDHW-o85Iyf227dQPgEUrbxJ0PA4_Iez7u1SwEvMiQyg19o8PRv1bi6dcu6qfvNLS7bHtIqQX9MXBvwu4vQby7RWXRNhquDDtHiYTqfPJHZ62M5Gc-IF1T1JDpQWtJYeKWst5r6QivjtPHaBlAyChWVK5bWLRnTMngpvTWO66CDK6QRQ0T3vz51OSeI1SrV3y5tKkarHZ1qS6fa0akOdLaTm_2kBoBj3RpjmeDiHy2WYSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety</title><source>IEEE Electronic Library (IEL)</source><creator>Sheth, Amit ; Gaur, Manas ; Roy, Kaushik ; Venkataraman, Revathy ; Khandelwal, Vedant ; Sheth, Amit</creator><creatorcontrib>Sheth, Amit ; Gaur, Manas ; Roy, Kaushik ; Venkataraman, Revathy ; Khandelwal, Vedant ; Sheth, Amit</creatorcontrib><description>AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or well-defined processes set by experts, community, or standards. We characterize these as process knowledge (PK). For example, to diagnose the severity of depression, the AI system should incorporate PK that is part of the clinical decision-making process, such as the Patient Health Questionnaire (PHQ-9). Likewise, a nutritionist's knowledge and dietary guidelines are needed to create food plans for diabetic patients. Furthermore, the BlackBox nature of purely data-reliant statistical AI systems falls short in providing user-understandable explanations, such as what a clinician would need to ensure and document compliance with medical guidelines before relying on a recommendation. Using the examples of mental health and cooking recipes for diabetic patients, we show why, what, and how to incorporate PK along with domain knowledge in machine learning. We discuss methods for infusing PK and present performance evaluation metrics. Support for safety and user-level explainability of the PK-infused learning improves confidence and trust in the AI system.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2022.3182349</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Diabetes ; Machine learning ; Mental health ; Performance evaluation ; Safety ; User centered design</subject><ispartof>IEEE internet computing, 2022-09, Vol.26 (5), p.76-84</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-fae5740f6c559c970c6758a78c79de54f35f5a6b9ab1174dc44c98a27d7da6483</citedby><orcidid>0000-0002-0021-5293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9889132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9889132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheth, Amit</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Venkataraman, Revathy</creatorcontrib><creatorcontrib>Khandelwal, Vedant</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><title>Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or well-defined processes set by experts, community, or standards. We characterize these as process knowledge (PK). For example, to diagnose the severity of depression, the AI system should incorporate PK that is part of the clinical decision-making process, such as the Patient Health Questionnaire (PHQ-9). Likewise, a nutritionist's knowledge and dietary guidelines are needed to create food plans for diabetic patients. Furthermore, the BlackBox nature of purely data-reliant statistical AI systems falls short in providing user-understandable explanations, such as what a clinician would need to ensure and document compliance with medical guidelines before relying on a recommendation. Using the examples of mental health and cooking recipes for diabetic patients, we show why, what, and how to incorporate PK along with domain knowledge in machine learning. We discuss methods for infusing PK and present performance evaluation metrics. Support for safety and user-level explainability of the PK-infused learning improves confidence and trust in the AI system.</description><subject>Artificial intelligence</subject><subject>Diabetes</subject><subject>Machine learning</subject><subject>Mental health</subject><subject>Performance evaluation</subject><subject>Safety</subject><subject>User centered design</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEYhIMoWKt3wUt-gKn53CTeSqm6WFGwvQlLmryRlXW3JKu1_96Wlp5mGGbm8CB0zeiIMWrvXsrJiFPOR4IZLqQ9QQNmJSOUCXa69dRYog1l5-gi5y9KqTGcDdDHW-o85Iyf227dQPgEUrbxJ0PA4_Iez7u1SwEvMiQyg19o8PRv1bi6dcu6qfvNLS7bHtIqQX9MXBvwu4vQby7RWXRNhquDDtHiYTqfPJHZ62M5Gc-IF1T1JDpQWtJYeKWst5r6QivjtPHaBlAyChWVK5bWLRnTMngpvTWO66CDK6QRQ0T3vz51OSeI1SrV3y5tKkarHZ1qS6fa0akOdLaTm_2kBoBj3RpjmeDiHy2WYSo</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sheth, Amit</creator><creator>Gaur, Manas</creator><creator>Roy, Kaushik</creator><creator>Venkataraman, Revathy</creator><creator>Khandelwal, Vedant</creator><creator>Sheth, Amit</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid></search><sort><creationdate>20220901</creationdate><title>Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety</title><author>Sheth, Amit ; Gaur, Manas ; Roy, Kaushik ; Venkataraman, Revathy ; Khandelwal, Vedant ; Sheth, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-fae5740f6c559c970c6758a78c79de54f35f5a6b9ab1174dc44c98a27d7da6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Diabetes</topic><topic>Machine learning</topic><topic>Mental health</topic><topic>Performance evaluation</topic><topic>Safety</topic><topic>User centered design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheth, Amit</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Venkataraman, Revathy</creatorcontrib><creatorcontrib>Khandelwal, Vedant</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheth, Amit</au><au>Gaur, Manas</au><au>Roy, Kaushik</au><au>Venkataraman, Revathy</au><au>Khandelwal, Vedant</au><au>Sheth, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>76</spage><epage>84</epage><pages>76-84</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>AI has seen wide adoption for automating tasks in several domains. However, AI's use in high-value, sensitive, or safety-critical applications such as self-management for personalized health or personalized nutrition has been challenging. These require that the AI system follows guidelines or well-defined processes set by experts, community, or standards. We characterize these as process knowledge (PK). For example, to diagnose the severity of depression, the AI system should incorporate PK that is part of the clinical decision-making process, such as the Patient Health Questionnaire (PHQ-9). Likewise, a nutritionist's knowledge and dietary guidelines are needed to create food plans for diabetic patients. Furthermore, the BlackBox nature of purely data-reliant statistical AI systems falls short in providing user-understandable explanations, such as what a clinician would need to ensure and document compliance with medical guidelines before relying on a recommendation. Using the examples of mental health and cooking recipes for diabetic patients, we show why, what, and how to incorporate PK along with domain knowledge in machine learning. We discuss methods for infusing PK and present performance evaluation metrics. Support for safety and user-level explainability of the PK-infused learning improves confidence and trust in the AI system.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2022.3182349</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7801
ispartof IEEE internet computing, 2022-09, Vol.26 (5), p.76-84
issn 1089-7801
1941-0131
language eng
recordid cdi_ieee_primary_9889132
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Diabetes
Machine learning
Mental health
Performance evaluation
Safety
User centered design
title Process Knowledge-Infused AI: Toward User-Level Explainability, Interpretability, and Safety
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Knowledge-Infused%20AI:%20Toward%20User-Level%20Explainability,%20Interpretability,%20and%20Safety&rft.jtitle=IEEE%20internet%20computing&rft.au=Sheth,%20Amit&rft.date=2022-09-01&rft.volume=26&rft.issue=5&rft.spage=76&rft.epage=84&rft.pages=76-84&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2022.3182349&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2022_3182349%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9889132&rfr_iscdi=true