Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases

This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2022-09, Vol.20 (9), p.2189-2195
Hauptverfasser: Peixoto, Julia Schubert, Cukla, Anselmo Rafael, De Souza Leite Cuadros, Marco Antonio, Welfer, Daniel, Tello Gamarra, Daniel Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2195
container_issue 9
container_start_page 2189
container_title Revista IEEE América Latina
container_volume 20
creator Peixoto, Julia Schubert
Cukla, Anselmo Rafael
De Souza Leite Cuadros, Marco Antonio
Welfer, Daniel
Tello Gamarra, Daniel Fernando
description This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.
doi_str_mv 10.1109/TLA.2022.9878175
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9878175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9878175</ieee_id><sourcerecordid>2711058962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvgpcFj5K6H02ye6xNW4VUoaZ4XHaT2TZFk7qbHPzvTWwVTzPDe2-G-SF0TcmIUiLvs3QyYoSxkRSxoHF4ggY0HIuASMlO__Xn6ML7HSFcRIIPkF2Ab1oHeAV5vanKpqwr3Pqy2uC59k2SvWFdFTgB2OMUtKt6ZQnNti48LivcbAEvX1fTgLIfYz8_Z2u8WjzcJTjRjTbag79EZ1a_e7g61iFaz2fZ9DFIXxZP00ka5IxETcB1GOkiJ-NCgyE8soZbU8SEFiIOcxBcxyHLuZVGck4YgXGYm7iQzArDjDB8iG4Pe_eu_my719Subl3VnVQs7jiFQkasc5GDK3e19w6s2rvyQ7svRYnqaaqOpuppqiPNLnJziJQA8Gf_Vb8Bx4Runw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711058962</pqid></control><display><type>article</type><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><source>IEEE Electronic Library (IEL)</source><creator>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</creator><creatorcontrib>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</creatorcontrib><description>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2022.9878175</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Convolutional neural networks ; Deep learning ; FastDTW ; gated recurrent unit ; Gesture recognition ; Logic gates ; long short-term memory ; Machine learning ; Neural networks ; Teaching methods ; Test sets ; Three-dimensional displays ; Training</subject><ispartof>Revista IEEE América Latina, 2022-09, Vol.20 (9), p.2189-2195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</citedby><orcidid>0000-0003-1560-423X ; 0000-0002-4714-7849 ; 0000-0001-5150-9745 ; 0000-0003-4191-1794 ; 0000-0002-5313-4593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9878175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9878175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peixoto, Julia Schubert</creatorcontrib><creatorcontrib>Cukla, Anselmo Rafael</creatorcontrib><creatorcontrib>De Souza Leite Cuadros, Marco Antonio</creatorcontrib><creatorcontrib>Welfer, Daniel</creatorcontrib><creatorcontrib>Tello Gamarra, Daniel Fernando</creatorcontrib><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>FastDTW</subject><subject>gated recurrent unit</subject><subject>Gesture recognition</subject><subject>Logic gates</subject><subject>long short-term memory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Teaching methods</subject><subject>Test sets</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvgpcFj5K6H02ye6xNW4VUoaZ4XHaT2TZFk7qbHPzvTWwVTzPDe2-G-SF0TcmIUiLvs3QyYoSxkRSxoHF4ggY0HIuASMlO__Xn6ML7HSFcRIIPkF2Ab1oHeAV5vanKpqwr3Pqy2uC59k2SvWFdFTgB2OMUtKt6ZQnNti48LivcbAEvX1fTgLIfYz8_Z2u8WjzcJTjRjTbag79EZ1a_e7g61iFaz2fZ9DFIXxZP00ka5IxETcB1GOkiJ-NCgyE8soZbU8SEFiIOcxBcxyHLuZVGck4YgXGYm7iQzArDjDB8iG4Pe_eu_my719Subl3VnVQs7jiFQkasc5GDK3e19w6s2rvyQ7svRYnqaaqOpuppqiPNLnJziJQA8Gf_Vb8Bx4Runw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Peixoto, Julia Schubert</creator><creator>Cukla, Anselmo Rafael</creator><creator>De Souza Leite Cuadros, Marco Antonio</creator><creator>Welfer, Daniel</creator><creator>Tello Gamarra, Daniel Fernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1560-423X</orcidid><orcidid>https://orcid.org/0000-0002-4714-7849</orcidid><orcidid>https://orcid.org/0000-0001-5150-9745</orcidid><orcidid>https://orcid.org/0000-0003-4191-1794</orcidid><orcidid>https://orcid.org/0000-0002-5313-4593</orcidid></search><sort><creationdate>20220901</creationdate><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><author>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>FastDTW</topic><topic>gated recurrent unit</topic><topic>Gesture recognition</topic><topic>Logic gates</topic><topic>long short-term memory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Teaching methods</topic><topic>Test sets</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Julia Schubert</creatorcontrib><creatorcontrib>Cukla, Anselmo Rafael</creatorcontrib><creatorcontrib>De Souza Leite Cuadros, Marco Antonio</creatorcontrib><creatorcontrib>Welfer, Daniel</creatorcontrib><creatorcontrib>Tello Gamarra, Daniel Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peixoto, Julia Schubert</au><au>Cukla, Anselmo Rafael</au><au>De Souza Leite Cuadros, Marco Antonio</au><au>Welfer, Daniel</au><au>Tello Gamarra, Daniel Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>2189</spage><epage>2195</epage><pages>2189-2195</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2022.9878175</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1560-423X</orcidid><orcidid>https://orcid.org/0000-0002-4714-7849</orcidid><orcidid>https://orcid.org/0000-0001-5150-9745</orcidid><orcidid>https://orcid.org/0000-0003-4191-1794</orcidid><orcidid>https://orcid.org/0000-0002-5313-4593</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2022-09, Vol.20 (9), p.2189-2195
issn 1548-0992
1548-0992
language eng
recordid cdi_ieee_primary_9878175
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Convolutional neural networks
Deep learning
FastDTW
gated recurrent unit
Gesture recognition
Logic gates
long short-term memory
Machine learning
Neural networks
Teaching methods
Test sets
Three-dimensional displays
Training
title Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gesture%20Recognition%20using%20FastDTW%20and%20Deep%20Learning%20Methods%20in%20the%20MSRC-12%20and%20the%20NTU%20RGB+D%20Databases&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Peixoto,%20Julia%20Schubert&rft.date=2022-09-01&rft.volume=20&rft.issue=9&rft.spage=2189&rft.epage=2195&rft.pages=2189-2195&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2022.9878175&rft_dat=%3Cproquest_RIE%3E2711058962%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711058962&rft_id=info:pmid/&rft_ieee_id=9878175&rfr_iscdi=true