Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases
This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2022-09, Vol.20 (9), p.2189-2195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2195 |
---|---|
container_issue | 9 |
container_start_page | 2189 |
container_title | Revista IEEE América Latina |
container_volume | 20 |
creator | Peixoto, Julia Schubert Cukla, Anselmo Rafael De Souza Leite Cuadros, Marco Antonio Welfer, Daniel Tello Gamarra, Daniel Fernando |
description | This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively. |
doi_str_mv | 10.1109/TLA.2022.9878175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9878175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9878175</ieee_id><sourcerecordid>2711058962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvgpcFj5K6H02ye6xNW4VUoaZ4XHaT2TZFk7qbHPzvTWwVTzPDe2-G-SF0TcmIUiLvs3QyYoSxkRSxoHF4ggY0HIuASMlO__Xn6ML7HSFcRIIPkF2Ab1oHeAV5vanKpqwr3Pqy2uC59k2SvWFdFTgB2OMUtKt6ZQnNti48LivcbAEvX1fTgLIfYz8_Z2u8WjzcJTjRjTbag79EZ1a_e7g61iFaz2fZ9DFIXxZP00ka5IxETcB1GOkiJ-NCgyE8soZbU8SEFiIOcxBcxyHLuZVGck4YgXGYm7iQzArDjDB8iG4Pe_eu_my719Subl3VnVQs7jiFQkasc5GDK3e19w6s2rvyQ7svRYnqaaqOpuppqiPNLnJziJQA8Gf_Vb8Bx4Runw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711058962</pqid></control><display><type>article</type><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><source>IEEE Electronic Library (IEL)</source><creator>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</creator><creatorcontrib>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</creatorcontrib><description>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2022.9878175</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Convolutional neural networks ; Deep learning ; FastDTW ; gated recurrent unit ; Gesture recognition ; Logic gates ; long short-term memory ; Machine learning ; Neural networks ; Teaching methods ; Test sets ; Three-dimensional displays ; Training</subject><ispartof>Revista IEEE América Latina, 2022-09, Vol.20 (9), p.2189-2195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</citedby><orcidid>0000-0003-1560-423X ; 0000-0002-4714-7849 ; 0000-0001-5150-9745 ; 0000-0003-4191-1794 ; 0000-0002-5313-4593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9878175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9878175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peixoto, Julia Schubert</creatorcontrib><creatorcontrib>Cukla, Anselmo Rafael</creatorcontrib><creatorcontrib>De Souza Leite Cuadros, Marco Antonio</creatorcontrib><creatorcontrib>Welfer, Daniel</creatorcontrib><creatorcontrib>Tello Gamarra, Daniel Fernando</creatorcontrib><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>FastDTW</subject><subject>gated recurrent unit</subject><subject>Gesture recognition</subject><subject>Logic gates</subject><subject>long short-term memory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Teaching methods</subject><subject>Test sets</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvgpcFj5K6H02ye6xNW4VUoaZ4XHaT2TZFk7qbHPzvTWwVTzPDe2-G-SF0TcmIUiLvs3QyYoSxkRSxoHF4ggY0HIuASMlO__Xn6ML7HSFcRIIPkF2Ab1oHeAV5vanKpqwr3Pqy2uC59k2SvWFdFTgB2OMUtKt6ZQnNti48LivcbAEvX1fTgLIfYz8_Z2u8WjzcJTjRjTbag79EZ1a_e7g61iFaz2fZ9DFIXxZP00ka5IxETcB1GOkiJ-NCgyE8soZbU8SEFiIOcxBcxyHLuZVGck4YgXGYm7iQzArDjDB8iG4Pe_eu_my719Subl3VnVQs7jiFQkasc5GDK3e19w6s2rvyQ7svRYnqaaqOpuppqiPNLnJziJQA8Gf_Vb8Bx4Runw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Peixoto, Julia Schubert</creator><creator>Cukla, Anselmo Rafael</creator><creator>De Souza Leite Cuadros, Marco Antonio</creator><creator>Welfer, Daniel</creator><creator>Tello Gamarra, Daniel Fernando</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1560-423X</orcidid><orcidid>https://orcid.org/0000-0002-4714-7849</orcidid><orcidid>https://orcid.org/0000-0001-5150-9745</orcidid><orcidid>https://orcid.org/0000-0003-4191-1794</orcidid><orcidid>https://orcid.org/0000-0002-5313-4593</orcidid></search><sort><creationdate>20220901</creationdate><title>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</title><author>Peixoto, Julia Schubert ; Cukla, Anselmo Rafael ; De Souza Leite Cuadros, Marco Antonio ; Welfer, Daniel ; Tello Gamarra, Daniel Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-3a56adc04daeb036fb3fbd701d875ce83a752c3f9b933020e45cb7d92f8b2b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>FastDTW</topic><topic>gated recurrent unit</topic><topic>Gesture recognition</topic><topic>Logic gates</topic><topic>long short-term memory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Teaching methods</topic><topic>Test sets</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Julia Schubert</creatorcontrib><creatorcontrib>Cukla, Anselmo Rafael</creatorcontrib><creatorcontrib>De Souza Leite Cuadros, Marco Antonio</creatorcontrib><creatorcontrib>Welfer, Daniel</creatorcontrib><creatorcontrib>Tello Gamarra, Daniel Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peixoto, Julia Schubert</au><au>Cukla, Anselmo Rafael</au><au>De Souza Leite Cuadros, Marco Antonio</au><au>Welfer, Daniel</au><au>Tello Gamarra, Daniel Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>2189</spage><epage>2195</epage><pages>2189-2195</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work explores the use of three deep learning methods for gesture recognition: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) using Fast Dynamic Time Warping (FastDTW). The gestures were captured by Kinect sensors, two skeleton-based databases are used: Microsoft Research Cambridge-12 (MSRC-12) and NTU RGB+D. Also, the FastDTW technique was also employed to standardize the input size of the data. The MSRC-12 database achieved an accuracy rate of 82,36% in the test set with the CNN, the LSTM achieved an accuracy rate of 87,30% also in the test set, and in GRU the accuracy achieved in the test set was 89,34%. With the NTU RGB+D database, two evaluation methods were used: Cross-View and Cross-Subject. In the test set with Cross-View evaluation was obtained an accuracy rate of 63,53%, 55,14%, and 61,00%, with CNN, LSTM, and GRU respectively; and with the Cross-Subject evaluation method, it was achieved an accuracy rate of 66,19%, 64,43% and 60,17% in the test set on CNN, LSTM and GRU, respectively.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2022.9878175</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1560-423X</orcidid><orcidid>https://orcid.org/0000-0002-4714-7849</orcidid><orcidid>https://orcid.org/0000-0001-5150-9745</orcidid><orcidid>https://orcid.org/0000-0003-4191-1794</orcidid><orcidid>https://orcid.org/0000-0002-5313-4593</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2022-09, Vol.20 (9), p.2189-2195 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_ieee_primary_9878175 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Artificial neural networks Convolutional neural networks Deep learning FastDTW gated recurrent unit Gesture recognition Logic gates long short-term memory Machine learning Neural networks Teaching methods Test sets Three-dimensional displays Training |
title | Gesture Recognition using FastDTW and Deep Learning Methods in the MSRC-12 and the NTU RGB+D Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gesture%20Recognition%20using%20FastDTW%20and%20Deep%20Learning%20Methods%20in%20the%20MSRC-12%20and%20the%20NTU%20RGB+D%20Databases&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Peixoto,%20Julia%20Schubert&rft.date=2022-09-01&rft.volume=20&rft.issue=9&rft.spage=2189&rft.epage=2195&rft.pages=2189-2195&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2022.9878175&rft_dat=%3Cproquest_RIE%3E2711058962%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711058962&rft_id=info:pmid/&rft_ieee_id=9878175&rfr_iscdi=true |