Self-Supervised Learning in Remote Sensing: A review
In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains loc...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing magazine 2022-12, Vol.10 (4), p.213-247 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 4 |
container_start_page | 213 |
container_title | IEEE geoscience and remote sensing magazine |
container_volume | 10 |
creator | Wang, Yi Albrecht, Conrad M. Braham, Nassim Ait Ali Mou, Lichao Zhu, Xiao Xiang |
description | In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains. |
doi_str_mv | 10.1109/MGRS.2022.3198244 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9875399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875399</ieee_id><sourcerecordid>10_1109_MGRS_2022_3198244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2234-9d072932877b61937ffdb9ca7661b5a5120360d491ddddf23427f300bae971fc3</originalsourceid><addsrcrecordid>eNo9j91KAzEQRoMoWGofQLzZF8iaSXaTjHelaCusCF29DvszkZV2WxKt-PamtPjdzPAxZ-AwdgsiBxB4_7Jc17kUUuYK0MqiuGATCdpybRVcpr0wikuF5prNYvwUKbYEBDthRU0bz-vvPYXDEKnPKmrCOIwf2TBma9ruviiraYypecjmWaDDQD837Mo3m0iz85yy96fHt8WKV6_L58W84p2UquDYCyNRSWtMqwGV8b5vsWuM1tCWTQlSKC36AqFP8QmRxish2obQgO_UlMHpbxd2MQbybh-GbRN-HQh3NHdHc3c0d2fzxNydmIGI_u_RmlIhqj91mVLf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Supervised Learning in Remote Sensing: A review</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yi ; Albrecht, Conrad M. ; Braham, Nassim Ait Ali ; Mou, Lichao ; Zhu, Xiao Xiang</creator><creatorcontrib>Wang, Yi ; Albrecht, Conrad M. ; Braham, Nassim Ait Ali ; Mou, Lichao ; Zhu, Xiao Xiang</creatorcontrib><description>In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.</description><identifier>ISSN: 2473-2397</identifier><identifier>EISSN: 2168-6831</identifier><identifier>DOI: 10.1109/MGRS.2022.3198244</identifier><identifier>CODEN: IGRSCZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; Learning systems ; Remote sensing ; Self-supervised learning</subject><ispartof>IEEE geoscience and remote sensing magazine, 2022-12, Vol.10 (4), p.213-247</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2234-9d072932877b61937ffdb9ca7661b5a5120360d491ddddf23427f300bae971fc3</citedby><cites>FETCH-LOGICAL-c2234-9d072932877b61937ffdb9ca7661b5a5120360d491ddddf23427f300bae971fc3</cites><orcidid>0000-0002-3096-6610 ; 0000-0001-8407-6413 ; 0000-0001-5530-3613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9875399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Albrecht, Conrad M.</creatorcontrib><creatorcontrib>Braham, Nassim Ait Ali</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><title>Self-Supervised Learning in Remote Sensing: A review</title><title>IEEE geoscience and remote sensing magazine</title><addtitle>GRSM</addtitle><description>In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.</description><subject>Deep learning</subject><subject>Learning systems</subject><subject>Remote sensing</subject><subject>Self-supervised learning</subject><issn>2473-2397</issn><issn>2168-6831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j91KAzEQRoMoWGofQLzZF8iaSXaTjHelaCusCF29DvszkZV2WxKt-PamtPjdzPAxZ-AwdgsiBxB4_7Jc17kUUuYK0MqiuGATCdpybRVcpr0wikuF5prNYvwUKbYEBDthRU0bz-vvPYXDEKnPKmrCOIwf2TBma9ruviiraYypecjmWaDDQD837Mo3m0iz85yy96fHt8WKV6_L58W84p2UquDYCyNRSWtMqwGV8b5vsWuM1tCWTQlSKC36AqFP8QmRxish2obQgO_UlMHpbxd2MQbybh-GbRN-HQh3NHdHc3c0d2fzxNydmIGI_u_RmlIhqj91mVLf</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Wang, Yi</creator><creator>Albrecht, Conrad M.</creator><creator>Braham, Nassim Ait Ali</creator><creator>Mou, Lichao</creator><creator>Zhu, Xiao Xiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3096-6610</orcidid><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid></search><sort><creationdate>202212</creationdate><title>Self-Supervised Learning in Remote Sensing: A review</title><author>Wang, Yi ; Albrecht, Conrad M. ; Braham, Nassim Ait Ali ; Mou, Lichao ; Zhu, Xiao Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2234-9d072932877b61937ffdb9ca7661b5a5120360d491ddddf23427f300bae971fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Learning systems</topic><topic>Remote sensing</topic><topic>Self-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Albrecht, Conrad M.</creatorcontrib><creatorcontrib>Braham, Nassim Ait Ali</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yi</au><au>Albrecht, Conrad M.</au><au>Braham, Nassim Ait Ali</au><au>Mou, Lichao</au><au>Zhu, Xiao Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Learning in Remote Sensing: A review</atitle><jtitle>IEEE geoscience and remote sensing magazine</jtitle><stitle>GRSM</stitle><date>2022-12</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>213</spage><epage>247</epage><pages>213-247</pages><issn>2473-2397</issn><eissn>2168-6831</eissn><coden>IGRSCZ</coden><abstract>In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.</abstract><pub>IEEE</pub><doi>10.1109/MGRS.2022.3198244</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-3096-6610</orcidid><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2473-2397 |
ispartof | IEEE geoscience and remote sensing magazine, 2022-12, Vol.10 (4), p.213-247 |
issn | 2473-2397 2168-6831 |
language | eng |
recordid | cdi_ieee_primary_9875399 |
source | IEEE Electronic Library (IEL) |
subjects | Deep learning Learning systems Remote sensing Self-supervised learning |
title | Self-Supervised Learning in Remote Sensing: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Learning%20in%20Remote%20Sensing:%20A%20review&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20magazine&rft.au=Wang,%20Yi&rft.date=2022-12&rft.volume=10&rft.issue=4&rft.spage=213&rft.epage=247&rft.pages=213-247&rft.issn=2473-2397&rft.eissn=2168-6831&rft.coden=IGRSCZ&rft_id=info:doi/10.1109/MGRS.2022.3198244&rft_dat=%3Ccrossref_RIE%3E10_1109_MGRS_2022_3198244%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9875399&rfr_iscdi=true |