Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data

In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-11, Vol.22 (21), p.1-1
Hauptverfasser: Badawi, Diaa, Bassi, Ishaan, Ozev, Sule, Enis Cetin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 21
container_start_page 1
container_title IEEE sensors journal
container_volume 22
creator Badawi, Diaa
Bassi, Ishaan
Ozev, Sule
Enis Cetin, A.
description In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.
doi_str_mv 10.1109/JSEN.2022.3202134
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9875112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875112</ieee_id><sourcerecordid>2731243419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwARCXSpw76iT9kyNsYwNVcChI3CI3dVDH1pakO8Cnp9UmLrZlvedn_Ri7hmgGEKm752L5MuMR5zMxVBDyhE0gjrMQUpmdjrOIQinSj3N24f0mikClcTph6wVRF-SErqmbz_ABPVXBCv24-gqKdu8MBXlrcFv_Yl-3TWBduwuKDp2noKDGty5YYI-X7Mzi1tPVsU_Z--Pybb4O89fV0_w-Dw1Xog8rk2QkwHBQkZS8JIUxoFRIBkvBKY5LZZMsMRZlRVZVwC1iaQmNlUllxZTdHu52rv3ek-_1ZniyGSI1TwVwKSSoQQUHlXGt946s7ly9Q_ejIdIjMD0C0yMwfQQ2eG4OnpqI_vUqS2MALv4ARItnTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731243419</pqid></control><display><type>article</type><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</creator><creatorcontrib>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</creatorcontrib><description>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3202134</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Back propagation networks ; Chemical sensors ; Deep learning ; Discrete cosine transform ; Discrete cosine transforms ; Feature maps ; Gas detectors ; Gas leaks ; Indoor environments ; Industrial plants ; Interpolation ; inverse problem ; Inverse problems ; Isopropanol ; Iterative methods ; Machine learning ; Methane ; multiple-sensor systems ; Position measurement ; Sensors ; source identification</subject><ispartof>IEEE sensors journal, 2022-11, Vol.22 (21), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</citedby><cites>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</cites><orcidid>0000-0003-4979-5572 ; 0000-0002-3449-1958 ; 0000-0002-3636-715X ; 0000-0001-6007-216X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9875112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badawi, Diaa</creatorcontrib><creatorcontrib>Bassi, Ishaan</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><creatorcontrib>Enis Cetin, A.</creatorcontrib><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Chemical sensors</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>Feature maps</subject><subject>Gas detectors</subject><subject>Gas leaks</subject><subject>Indoor environments</subject><subject>Industrial plants</subject><subject>Interpolation</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Isopropanol</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Methane</subject><subject>multiple-sensor systems</subject><subject>Position measurement</subject><subject>Sensors</subject><subject>source identification</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwARCXSpw76iT9kyNsYwNVcChI3CI3dVDH1pakO8Cnp9UmLrZlvedn_Ri7hmgGEKm752L5MuMR5zMxVBDyhE0gjrMQUpmdjrOIQinSj3N24f0mikClcTph6wVRF-SErqmbz_ABPVXBCv24-gqKdu8MBXlrcFv_Yl-3TWBduwuKDp2noKDGty5YYI-X7Mzi1tPVsU_Z--Pybb4O89fV0_w-Dw1Xog8rk2QkwHBQkZS8JIUxoFRIBkvBKY5LZZMsMRZlRVZVwC1iaQmNlUllxZTdHu52rv3ek-_1ZniyGSI1TwVwKSSoQQUHlXGt946s7ly9Q_ejIdIjMD0C0yMwfQQ2eG4OnpqI_vUqS2MALv4ARItnTg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Badawi, Diaa</creator><creator>Bassi, Ishaan</creator><creator>Ozev, Sule</creator><creator>Enis Cetin, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4979-5572</orcidid><orcidid>https://orcid.org/0000-0002-3449-1958</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid><orcidid>https://orcid.org/0000-0001-6007-216X</orcidid></search><sort><creationdate>20221101</creationdate><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><author>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Chemical sensors</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>Feature maps</topic><topic>Gas detectors</topic><topic>Gas leaks</topic><topic>Indoor environments</topic><topic>Industrial plants</topic><topic>Interpolation</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Isopropanol</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Methane</topic><topic>multiple-sensor systems</topic><topic>Position measurement</topic><topic>Sensors</topic><topic>source identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badawi, Diaa</creatorcontrib><creatorcontrib>Bassi, Ishaan</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><creatorcontrib>Enis Cetin, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badawi, Diaa</au><au>Bassi, Ishaan</au><au>Ozev, Sule</au><au>Enis Cetin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>22</volume><issue>21</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3202134</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4979-5572</orcidid><orcidid>https://orcid.org/0000-0002-3449-1958</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid><orcidid>https://orcid.org/0000-0001-6007-216X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-11, Vol.22 (21), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9875112
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Chemical sensors
Deep learning
Discrete cosine transform
Discrete cosine transforms
Feature maps
Gas detectors
Gas leaks
Indoor environments
Industrial plants
Interpolation
inverse problem
Inverse problems
Isopropanol
Iterative methods
Machine learning
Methane
multiple-sensor systems
Position measurement
Sensors
source identification
title Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Gas%20Leak%20Source%20Localization%20from%20Sparse%20Sensor%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Badawi,%20Diaa&rft.date=2022-11-01&rft.volume=22&rft.issue=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3202134&rft_dat=%3Cproquest_RIE%3E2731243419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731243419&rft_id=info:pmid/&rft_ieee_id=9875112&rfr_iscdi=true