Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data
In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-11, Vol.22 (21), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 21 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Badawi, Diaa Bassi, Ishaan Ozev, Sule Enis Cetin, A. |
description | In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy. |
doi_str_mv | 10.1109/JSEN.2022.3202134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9875112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875112</ieee_id><sourcerecordid>2731243419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwARCXSpw76iT9kyNsYwNVcChI3CI3dVDH1pakO8Cnp9UmLrZlvedn_Ri7hmgGEKm752L5MuMR5zMxVBDyhE0gjrMQUpmdjrOIQinSj3N24f0mikClcTph6wVRF-SErqmbz_ABPVXBCv24-gqKdu8MBXlrcFv_Yl-3TWBduwuKDp2noKDGty5YYI-X7Mzi1tPVsU_Z--Pybb4O89fV0_w-Dw1Xog8rk2QkwHBQkZS8JIUxoFRIBkvBKY5LZZMsMRZlRVZVwC1iaQmNlUllxZTdHu52rv3ek-_1ZniyGSI1TwVwKSSoQQUHlXGt946s7ly9Q_ejIdIjMD0C0yMwfQQ2eG4OnpqI_vUqS2MALv4ARItnTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731243419</pqid></control><display><type>article</type><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</creator><creatorcontrib>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</creatorcontrib><description>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3202134</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Back propagation networks ; Chemical sensors ; Deep learning ; Discrete cosine transform ; Discrete cosine transforms ; Feature maps ; Gas detectors ; Gas leaks ; Indoor environments ; Industrial plants ; Interpolation ; inverse problem ; Inverse problems ; Isopropanol ; Iterative methods ; Machine learning ; Methane ; multiple-sensor systems ; Position measurement ; Sensors ; source identification</subject><ispartof>IEEE sensors journal, 2022-11, Vol.22 (21), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</citedby><cites>FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</cites><orcidid>0000-0003-4979-5572 ; 0000-0002-3449-1958 ; 0000-0002-3636-715X ; 0000-0001-6007-216X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9875112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badawi, Diaa</creatorcontrib><creatorcontrib>Bassi, Ishaan</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><creatorcontrib>Enis Cetin, A.</creatorcontrib><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Chemical sensors</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>Feature maps</subject><subject>Gas detectors</subject><subject>Gas leaks</subject><subject>Indoor environments</subject><subject>Industrial plants</subject><subject>Interpolation</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Isopropanol</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Methane</subject><subject>multiple-sensor systems</subject><subject>Position measurement</subject><subject>Sensors</subject><subject>source identification</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwARCXSpw76iT9kyNsYwNVcChI3CI3dVDH1pakO8Cnp9UmLrZlvedn_Ri7hmgGEKm752L5MuMR5zMxVBDyhE0gjrMQUpmdjrOIQinSj3N24f0mikClcTph6wVRF-SErqmbz_ABPVXBCv24-gqKdu8MBXlrcFv_Yl-3TWBduwuKDp2noKDGty5YYI-X7Mzi1tPVsU_Z--Pybb4O89fV0_w-Dw1Xog8rk2QkwHBQkZS8JIUxoFRIBkvBKY5LZZMsMRZlRVZVwC1iaQmNlUllxZTdHu52rv3ek-_1ZniyGSI1TwVwKSSoQQUHlXGt946s7ly9Q_ejIdIjMD0C0yMwfQQ2eG4OnpqI_vUqS2MALv4ARItnTg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Badawi, Diaa</creator><creator>Bassi, Ishaan</creator><creator>Ozev, Sule</creator><creator>Enis Cetin, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4979-5572</orcidid><orcidid>https://orcid.org/0000-0002-3449-1958</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid><orcidid>https://orcid.org/0000-0001-6007-216X</orcidid></search><sort><creationdate>20221101</creationdate><title>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</title><author>Badawi, Diaa ; Bassi, Ishaan ; Ozev, Sule ; Enis Cetin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc68e31c2190442be9a51a49aecab32e55b9f686cfa4def9d12faabfeacf46df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Chemical sensors</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>Feature maps</topic><topic>Gas detectors</topic><topic>Gas leaks</topic><topic>Indoor environments</topic><topic>Industrial plants</topic><topic>Interpolation</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Isopropanol</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Methane</topic><topic>multiple-sensor systems</topic><topic>Position measurement</topic><topic>Sensors</topic><topic>source identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badawi, Diaa</creatorcontrib><creatorcontrib>Bassi, Ishaan</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><creatorcontrib>Enis Cetin, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badawi, Diaa</au><au>Bassi, Ishaan</au><au>Ozev, Sule</au><au>Enis Cetin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>22</volume><issue>21</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this article, we address the problem of estimating the location of gas leak sources using sparse unreliable spatio-temporal chemical sensor data. We pose the task of estimating the underlying gas signal and predicting the source location as an inverse problem. For this purpose, we develop a novel deep-learning projection-based framework. We incorporate traditional projection-onto-convex-sets (POCS) iteration in the structure of the deep model to obtain a regularized solution that conforms to our prior knowledge on the spatio-temporal structure of the gas concentration distribution.We use Discrete Cosine Transform (DCT) layers to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent to projecting onto a convex set. Furthermore, these projection operations are embedded in the non-linear structure of a convolutional neural network. We address two different types of data: Methane-propane leak from industrial plants and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental results are presented. Our results show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction with high accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3202134</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4979-5572</orcidid><orcidid>https://orcid.org/0000-0002-3449-1958</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid><orcidid>https://orcid.org/0000-0001-6007-216X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-11, Vol.22 (21), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9875112 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Back propagation Back propagation networks Chemical sensors Deep learning Discrete cosine transform Discrete cosine transforms Feature maps Gas detectors Gas leaks Indoor environments Industrial plants Interpolation inverse problem Inverse problems Isopropanol Iterative methods Machine learning Methane multiple-sensor systems Position measurement Sensors source identification |
title | Deep Learning-Based Gas Leak Source Localization from Sparse Sensor Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Gas%20Leak%20Source%20Localization%20from%20Sparse%20Sensor%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Badawi,%20Diaa&rft.date=2022-11-01&rft.volume=22&rft.issue=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3202134&rft_dat=%3Cproquest_RIE%3E2731243419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731243419&rft_id=info:pmid/&rft_ieee_id=9875112&rfr_iscdi=true |