Implementation of Autonomous Docking and Charging for a Supporting Robotic Fish

Underwater energy supplements for autonom- ous underwater vehicles (AUVs) are significant for ocean exploitation owing to energy storage and data communication limitations. Aiming at the energy supplement for bionic robotic fish, an autonomous recharging-oriented docking approach is proposed in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2023-07, Vol.70 (7), p.7023-7031
Hauptverfasser: Dong, Huijie, Wu, Zhengxing, Wang, Jian, Chen, Di, Tan, Min, Yu, Junzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Underwater energy supplements for autonom- ous underwater vehicles (AUVs) are significant for ocean exploitation owing to energy storage and data communication limitations. Aiming at the energy supplement for bionic robotic fish, an autonomous recharging-oriented docking approach is proposed in this article. First, an omnidirectional docking system containing a supporting robotic fish capable of visual recognition and wireless charging and a docking platform is presented. Next, five locomotive modes are designed and analyzed based on the hybrid swimming and gliding patterns for the robot fish. Utilizing the five modes, a docking procedure is planned, and an onboard-visual-based autonomous docking control strategy is presented. Aquatic experiments, including docking with the platform and refloating a small robot, are performed to verify the effectiveness of the proposed approach. The obtained results offer valuable insights into the development of autonomous docking of bionic robots, laying a solid foundation for the permanent operation of various underwater devices and robots.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2022.3201329