A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation
This article proposes a novel hybrid health monitoring approach to monitor the system-level degradation of aircraft flight control systems (FCSs). The idea derives from observing the nonlinear hysteresis phenomenon in FCS. First, a health FCS model is developed to implement the nonlinear degradation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-07, Vol.70 (7), p.7438-7448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7448 |
---|---|
container_issue | 7 |
container_start_page | 7438 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Guo, Yihan Ma, Cunbao Jing, Zhengdong |
description | This article proposes a novel hybrid health monitoring approach to monitor the system-level degradation of aircraft flight control systems (FCSs). The idea derives from observing the nonlinear hysteresis phenomenon in FCS. First, a health FCS model is developed to implement the nonlinear degradation signal extraction of FCS by building an adaptive-network-based fuzzy inference system, a data-driven method. Subsequently, the jump Markov autoregressive exogenous (JMARX) system with time delays is adopted to establish the FCS system-level degradation model. An expectation maximum-convex optimization algorithm is innovatively proposed to identify the model parameters. After that, three health indicators associated with the degradation model parameters are utilized for FCS system-level health monitoring. Finally, a practical flight experiment is conducted by a civil aircraft. The obtained experimental data is used to validate the effectiveness of the proposed FCS monitoring approach. The model of the time-delay JMARX system gets good modeling evaluation results on mean absolute error, standard deviation, etc. Besides, each of the three health indicators shows a clear FCS degradation tendency, which indicates that the proposed method successfully extracts the degradation information and monitors the health states of FCS. This approach is potential for practical and effective engineering applications in the aviation industry. |
doi_str_mv | 10.1109/TIE.2022.3201317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9870624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9870624</ieee_id><sourcerecordid>2777581279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6dd90dab38a92421bc7ce5d67e9bccb78e3888278a20d357fc57a5d0aca7a7213</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOKd3wUvAc2eSNk1yLHNzg4kHJx5DmqRbRtfMJBP239vR4enlhef3fjwAPGI0wRiJl_VyNiGIkElOEM4xuwIjTCnLhCj4NRghwniGUFHegrsYdwjhgmI6AraCi1MdnIELq9q0he--c8kH121gdTgEr_QWNj7AygUdVJPgvHWbbYJT36XgW_h5isnuI_x2fXhospX9tS18tZugjErOd_fgplFttA-XOgZf89l6ushWH2_LabXKNBE4ZaUxAhlV51wJUhBca6YtNSWzota6ZtzmnPP-E0WQySlrNGWKGqS0YooRnI_B8zC3P_znaGOSO38MXb9SEsYY5Zgw0VNooHTwMQbbyENwexVOEiN5lil7mfIsU15k9pGnIeKstf-44AyVpMj_AJZkcLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777581279</pqid></control><display><type>article</type><title>A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Yihan ; Ma, Cunbao ; Jing, Zhengdong</creator><creatorcontrib>Guo, Yihan ; Ma, Cunbao ; Jing, Zhengdong</creatorcontrib><description>This article proposes a novel hybrid health monitoring approach to monitor the system-level degradation of aircraft flight control systems (FCSs). The idea derives from observing the nonlinear hysteresis phenomenon in FCS. First, a health FCS model is developed to implement the nonlinear degradation signal extraction of FCS by building an adaptive-network-based fuzzy inference system, a data-driven method. Subsequently, the jump Markov autoregressive exogenous (JMARX) system with time delays is adopted to establish the FCS system-level degradation model. An expectation maximum-convex optimization algorithm is innovatively proposed to identify the model parameters. After that, three health indicators associated with the degradation model parameters are utilized for FCS system-level health monitoring. Finally, a practical flight experiment is conducted by a civil aircraft. The obtained experimental data is used to validate the effectiveness of the proposed FCS monitoring approach. The model of the time-delay JMARX system gets good modeling evaluation results on mean absolute error, standard deviation, etc. Besides, each of the three health indicators shows a clear FCS degradation tendency, which indicates that the proposed method successfully extracts the degradation information and monitors the health states of FCS. This approach is potential for practical and effective engineering applications in the aviation industry.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3201317</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace control ; Aging aircraft ; Aircraft ; Aircraft control ; Algorithms ; Atmospheric modeling ; Aviation ; Computational geometry ; Convexity ; Degradation ; Degradation signal extraction ; Delay effects ; expectation maximum-convex optimization algorithm ; flight control system (FCS) ; Flight control systems ; health indicators ; hybrid health monitoring approach ; Indicators ; jump Markov autoregressive exogenous (JMARX) system with time delays ; Mathematical models ; Monitoring ; Optimization ; Parameter identification ; Prognostics and health management ; Structural health monitoring</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-07, Vol.70 (7), p.7438-7448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6dd90dab38a92421bc7ce5d67e9bccb78e3888278a20d357fc57a5d0aca7a7213</citedby><cites>FETCH-LOGICAL-c291t-6dd90dab38a92421bc7ce5d67e9bccb78e3888278a20d357fc57a5d0aca7a7213</cites><orcidid>0000-0002-7858-1648 ; 0000-0002-2430-1997 ; 0000-0002-9602-4829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9870624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9870624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Ma, Cunbao</creatorcontrib><creatorcontrib>Jing, Zhengdong</creatorcontrib><title>A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article proposes a novel hybrid health monitoring approach to monitor the system-level degradation of aircraft flight control systems (FCSs). The idea derives from observing the nonlinear hysteresis phenomenon in FCS. First, a health FCS model is developed to implement the nonlinear degradation signal extraction of FCS by building an adaptive-network-based fuzzy inference system, a data-driven method. Subsequently, the jump Markov autoregressive exogenous (JMARX) system with time delays is adopted to establish the FCS system-level degradation model. An expectation maximum-convex optimization algorithm is innovatively proposed to identify the model parameters. After that, three health indicators associated with the degradation model parameters are utilized for FCS system-level health monitoring. Finally, a practical flight experiment is conducted by a civil aircraft. The obtained experimental data is used to validate the effectiveness of the proposed FCS monitoring approach. The model of the time-delay JMARX system gets good modeling evaluation results on mean absolute error, standard deviation, etc. Besides, each of the three health indicators shows a clear FCS degradation tendency, which indicates that the proposed method successfully extracts the degradation information and monitors the health states of FCS. This approach is potential for practical and effective engineering applications in the aviation industry.</description><subject>Aerospace control</subject><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Aircraft control</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Aviation</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Degradation</subject><subject>Degradation signal extraction</subject><subject>Delay effects</subject><subject>expectation maximum-convex optimization algorithm</subject><subject>flight control system (FCS)</subject><subject>Flight control systems</subject><subject>health indicators</subject><subject>hybrid health monitoring approach</subject><subject>Indicators</subject><subject>jump Markov autoregressive exogenous (JMARX) system with time delays</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Prognostics and health management</subject><subject>Structural health monitoring</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYh4MoOKd3wUvAc2eSNk1yLHNzg4kHJx5DmqRbRtfMJBP239vR4enlhef3fjwAPGI0wRiJl_VyNiGIkElOEM4xuwIjTCnLhCj4NRghwniGUFHegrsYdwjhgmI6AraCi1MdnIELq9q0he--c8kH121gdTgEr_QWNj7AygUdVJPgvHWbbYJT36XgW_h5isnuI_x2fXhospX9tS18tZugjErOd_fgplFttA-XOgZf89l6ushWH2_LabXKNBE4ZaUxAhlV51wJUhBca6YtNSWzota6ZtzmnPP-E0WQySlrNGWKGqS0YooRnI_B8zC3P_znaGOSO38MXb9SEsYY5Zgw0VNooHTwMQbbyENwexVOEiN5lil7mfIsU15k9pGnIeKstf-44AyVpMj_AJZkcLM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Yihan</creator><creator>Ma, Cunbao</creator><creator>Jing, Zhengdong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7858-1648</orcidid><orcidid>https://orcid.org/0000-0002-2430-1997</orcidid><orcidid>https://orcid.org/0000-0002-9602-4829</orcidid></search><sort><creationdate>20230701</creationdate><title>A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation</title><author>Guo, Yihan ; Ma, Cunbao ; Jing, Zhengdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6dd90dab38a92421bc7ce5d67e9bccb78e3888278a20d357fc57a5d0aca7a7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace control</topic><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Aircraft control</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Aviation</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Degradation</topic><topic>Degradation signal extraction</topic><topic>Delay effects</topic><topic>expectation maximum-convex optimization algorithm</topic><topic>flight control system (FCS)</topic><topic>Flight control systems</topic><topic>health indicators</topic><topic>hybrid health monitoring approach</topic><topic>Indicators</topic><topic>jump Markov autoregressive exogenous (JMARX) system with time delays</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Prognostics and health management</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Ma, Cunbao</creatorcontrib><creatorcontrib>Jing, Zhengdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Yihan</au><au>Ma, Cunbao</au><au>Jing, Zhengdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>7438</spage><epage>7448</epage><pages>7438-7448</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article proposes a novel hybrid health monitoring approach to monitor the system-level degradation of aircraft flight control systems (FCSs). The idea derives from observing the nonlinear hysteresis phenomenon in FCS. First, a health FCS model is developed to implement the nonlinear degradation signal extraction of FCS by building an adaptive-network-based fuzzy inference system, a data-driven method. Subsequently, the jump Markov autoregressive exogenous (JMARX) system with time delays is adopted to establish the FCS system-level degradation model. An expectation maximum-convex optimization algorithm is innovatively proposed to identify the model parameters. After that, three health indicators associated with the degradation model parameters are utilized for FCS system-level health monitoring. Finally, a practical flight experiment is conducted by a civil aircraft. The obtained experimental data is used to validate the effectiveness of the proposed FCS monitoring approach. The model of the time-delay JMARX system gets good modeling evaluation results on mean absolute error, standard deviation, etc. Besides, each of the three health indicators shows a clear FCS degradation tendency, which indicates that the proposed method successfully extracts the degradation information and monitors the health states of FCS. This approach is potential for practical and effective engineering applications in the aviation industry.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3201317</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7858-1648</orcidid><orcidid>https://orcid.org/0000-0002-2430-1997</orcidid><orcidid>https://orcid.org/0000-0002-9602-4829</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-07, Vol.70 (7), p.7438-7448 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9870624 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace control Aging aircraft Aircraft Aircraft control Algorithms Atmospheric modeling Aviation Computational geometry Convexity Degradation Degradation signal extraction Delay effects expectation maximum-convex optimization algorithm flight control system (FCS) Flight control systems health indicators hybrid health monitoring approach Indicators jump Markov autoregressive exogenous (JMARX) system with time delays Mathematical models Monitoring Optimization Parameter identification Prognostics and health management Structural health monitoring |
title | A Hybrid Health Monitoring Approach for Aircraft Flight Control Systems With System-Level Degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Health%20Monitoring%20Approach%20for%20Aircraft%20Flight%20Control%20Systems%20With%20System-Level%20Degradation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Guo,%20Yihan&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=7438&rft.epage=7448&rft.pages=7438-7448&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3201317&rft_dat=%3Cproquest_RIE%3E2777581279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777581279&rft_id=info:pmid/&rft_ieee_id=9870624&rfr_iscdi=true |