Specificity-Preserving Federated Learning for MR Image Reconstruction

Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-07, Vol.42 (7), p.2010-2021
Hauptverfasser: Feng, Chun-Mei, Yan, Yunlu, Wang, Shanshan, Xu, Yong, Shao, Ling, Fu, Huazhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2021
container_issue 7
container_start_page 2010
container_title IEEE transactions on medical imaging
container_volume 42
creator Feng, Chun-Mei
Yan, Yunlu
Wang, Shanshan
Xu, Yong
Shao, Ling
Fu, Huazhu
description Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.
doi_str_mv 10.1109/TMI.2022.3202106
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9868072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9868072</ieee_id><sourcerecordid>2707611324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d0c66602a68f34444be3028e9d2810159c540f28fb64139862e70891702a38aa3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4Mobk7vgiAFL146X5I2TY8yNh1sKHOCt5Clr6NjbWfSCvvvTdncwRwSePl-j_c-Qm4pDCmF9Gk5nw4ZMDbk_qYgzkifxrEMWRx9nZM-sESGAIL1yJVzGwAaxZBekh4XQKVMRJ-MP3ZoirwwRbMP3y06tD9FtQ4mmKHVDWbBDLWtulJe22C-CKalXmOwQFNXrrGtaYq6uiYXud46vDm-A_I5GS9Hr-Hs7WU6ep6FhkdJE2ZghBDAtJA5j_xZIQcmMc2YpEDj1MQR5EzmKxFRnkrBMAGZ0sRHuNSaD8jjoe_O1t8tukaVhTO43eoK69YplkAiKOUs8ujDP3RTt7by0ykmOY1BMtpRcKCMrZ2zmKudLUpt94qC6hQrr1h1itVRsY_cHxu3qxKzU-DPqQfuDkCBiKdvv42EhPFf5rB8ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508214</pqid></control><display><type>article</type><title>Specificity-Preserving Federated Learning for MR Image Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Chun-Mei ; Yan, Yunlu ; Wang, Shanshan ; Xu, Yong ; Shao, Ling ; Fu, Huazhu</creator><creatorcontrib>Feng, Chun-Mei ; Yan, Yunlu ; Wang, Shanshan ; Xu, Yong ; Shao, Ling ; Fu, Huazhu</creatorcontrib><description>Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3202106</identifier><identifier>PMID: 36018876</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Coders ; Collaboration ; Collaborative work ; Data privacy ; Federated learning ; Head ; Image processing ; Image reconstruction ; Magnetic resonance imaging ; MR image reconstruction ; Optimization ; Performance degradation ; Privacy ; Regularization ; Representations ; Servers ; Training</subject><ispartof>IEEE transactions on medical imaging, 2023-07, Vol.42 (7), p.2010-2021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d0c66602a68f34444be3028e9d2810159c540f28fb64139862e70891702a38aa3</citedby><cites>FETCH-LOGICAL-c347t-d0c66602a68f34444be3028e9d2810159c540f28fb64139862e70891702a38aa3</cites><orcidid>0000-0003-0530-2123 ; 0000-0002-8264-6117 ; 0000-0002-9702-5524 ; 0000-0002-0575-6523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9868072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9868072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36018876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Chun-Mei</creatorcontrib><creatorcontrib>Yan, Yunlu</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><title>Specificity-Preserving Federated Learning for MR Image Reconstruction</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Data privacy</subject><subject>Federated learning</subject><subject>Head</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>MR image reconstruction</subject><subject>Optimization</subject><subject>Performance degradation</subject><subject>Privacy</subject><subject>Regularization</subject><subject>Representations</subject><subject>Servers</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAUh4Mobk7vgiAFL146X5I2TY8yNh1sKHOCt5Clr6NjbWfSCvvvTdncwRwSePl-j_c-Qm4pDCmF9Gk5nw4ZMDbk_qYgzkifxrEMWRx9nZM-sESGAIL1yJVzGwAaxZBekh4XQKVMRJ-MP3ZoirwwRbMP3y06tD9FtQ4mmKHVDWbBDLWtulJe22C-CKalXmOwQFNXrrGtaYq6uiYXud46vDm-A_I5GS9Hr-Hs7WU6ep6FhkdJE2ZghBDAtJA5j_xZIQcmMc2YpEDj1MQR5EzmKxFRnkrBMAGZ0sRHuNSaD8jjoe_O1t8tukaVhTO43eoK69YplkAiKOUs8ujDP3RTt7by0ykmOY1BMtpRcKCMrZ2zmKudLUpt94qC6hQrr1h1itVRsY_cHxu3qxKzU-DPqQfuDkCBiKdvv42EhPFf5rB8ng</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Feng, Chun-Mei</creator><creator>Yan, Yunlu</creator><creator>Wang, Shanshan</creator><creator>Xu, Yong</creator><creator>Shao, Ling</creator><creator>Fu, Huazhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0530-2123</orcidid><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0002-0575-6523</orcidid></search><sort><creationdate>20230701</creationdate><title>Specificity-Preserving Federated Learning for MR Image Reconstruction</title><author>Feng, Chun-Mei ; Yan, Yunlu ; Wang, Shanshan ; Xu, Yong ; Shao, Ling ; Fu, Huazhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d0c66602a68f34444be3028e9d2810159c540f28fb64139862e70891702a38aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Data privacy</topic><topic>Federated learning</topic><topic>Head</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>MR image reconstruction</topic><topic>Optimization</topic><topic>Performance degradation</topic><topic>Privacy</topic><topic>Regularization</topic><topic>Representations</topic><topic>Servers</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chun-Mei</creatorcontrib><creatorcontrib>Yan, Yunlu</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Chun-Mei</au><au>Yan, Yunlu</au><au>Wang, Shanshan</au><au>Xu, Yong</au><au>Shao, Ling</au><au>Fu, Huazhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specificity-Preserving Federated Learning for MR Image Reconstruction</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>2010</spage><epage>2021</epage><pages>2010-2021</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Federated learning (FL) can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction by enabling multiple institutions to collaborate without needing to aggregate local data. However, the domain shift caused by different MR imaging protocols can substantially degrade the performance of FL models. Recent FL techniques tend to solve this by enhancing the generalization of the global model, but they ignore the domain-specific features, which may contain important information about the device properties and be useful for local reconstruction. In this paper, we propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The core idea is to divide the MR reconstruction model into two parts: a globally shared encoder to obtain a generalized representation at the global level, and a client-specific decoder to preserve the domain-specific properties of each client, which is important for collaborative reconstruction when the clients have unique distribution. Such scheme is then executed in the frequency space and the image space respectively, allowing exploration of generalized representation and client-specific properties simultaneously in different spaces. Moreover, to further boost the convergence of the globally shared encoder when a domain shift is present, a weighted contrastive regularization is introduced to directly correct any deviation between the client and server during optimization. Extensive experiments demonstrate that our FedMRI's reconstructed results are the closest to the ground-truth for multi-institutional data, and that it outperforms state-of-the-art FL methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36018876</pmid><doi>10.1109/TMI.2022.3202106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0530-2123</orcidid><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0002-0575-6523</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-07, Vol.42 (7), p.2010-2021
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_9868072
source IEEE Electronic Library (IEL)
subjects Algorithms
Coders
Collaboration
Collaborative work
Data privacy
Federated learning
Head
Image processing
Image reconstruction
Magnetic resonance imaging
MR image reconstruction
Optimization
Performance degradation
Privacy
Regularization
Representations
Servers
Training
title Specificity-Preserving Federated Learning for MR Image Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specificity-Preserving%20Federated%20Learning%20for%20MR%20Image%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Feng,%20Chun-Mei&rft.date=2023-07-01&rft.volume=42&rft.issue=7&rft.spage=2010&rft.epage=2021&rft.pages=2010-2021&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3202106&rft_dat=%3Cproquest_RIE%3E2707611324%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831508214&rft_id=info:pmid/36018876&rft_ieee_id=9868072&rfr_iscdi=true