Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection
This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Differe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2023-08, Vol.53 (8), p.5240-5249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5249 |
---|---|
container_issue | 8 |
container_start_page | 5240 |
container_title | IEEE transactions on cybernetics |
container_volume | 53 |
creator | Xin, Cai Xiao, Feng Wei, Bo Yu, Mei Fang, Muhammad Noaman |
description | This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods. |
doi_str_mv | 10.1109/TCYB.2022.3195361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9863764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9863764</ieee_id><sourcerecordid>2839519111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWtQfIIIEvHhpzWOTTY5a6wOKgg_EU8hmZ23qPtpk9-C_d2trD85lhplvhuFD6ISSEaVEX76OP65HjDA24lQLLukOGjAq1ZCxVOxua5keoOMY56QP1be02kcHXGiVKCIG6PHRxhmeLDtf-iz4rsIvAF--_sRFE_Ad1BBsiae-Bhvwy3dsoYr43bczfONj24XM1g7wM8zBtb6pj9BeYcsIx5t8iN5uJ6_j--H06e5hfDUdOp7odpjrwsk00VazzKVC5ImTuRJWWxA0I4mjhVM2J0zlLtFcq4w6KxyXBcsJETk_RBfru4vQLDuIral8dFCWtoami4alJFFSc0p79PwfOm-6UPffGaa4FlTTX4quKReaGAMUZhF8ZcO3ocSsfJuVb7PybTa--52zzeUuqyDfbvzZ7YHTNeABYDvWSvJUJvwH8IyDJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839519111</pqid></control><display><type>article</type><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><source>IEEE Electronic Library (IEL)</source><creator>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</creator><creatorcontrib>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</creatorcontrib><description>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2022.3195361</identifier><identifier>PMID: 35984805</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregative games ; Algorithms ; Cost function ; Disturbances ; external disturbances ; Game theory ; Games ; Heuristic algorithms ; Linear systems ; Nash equilibrium ; Nash equilibrium (NE) seeking ; Observers ; Perturbation theory ; Power system dynamics ; Singular perturbation ; Stability analysis ; Strategy</subject><ispartof>IEEE transactions on cybernetics, 2023-08, Vol.53 (8), p.5240-5249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</citedby><cites>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</cites><orcidid>0000-0001-5899-574X ; 0000-0002-8890-4383 ; 0000-0003-3784-3696 ; 0000-0002-2542-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9863764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9863764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35984805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Cai</creatorcontrib><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wei, Bo</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Fang, Muhammad Noaman</creatorcontrib><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</description><subject>Aggregative games</subject><subject>Algorithms</subject><subject>Cost function</subject><subject>Disturbances</subject><subject>external disturbances</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Linear systems</subject><subject>Nash equilibrium</subject><subject>Nash equilibrium (NE) seeking</subject><subject>Observers</subject><subject>Perturbation theory</subject><subject>Power system dynamics</subject><subject>Singular perturbation</subject><subject>Stability analysis</subject><subject>Strategy</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWtQfIIIEvHhpzWOTTY5a6wOKgg_EU8hmZ23qPtpk9-C_d2trD85lhplvhuFD6ISSEaVEX76OP65HjDA24lQLLukOGjAq1ZCxVOxua5keoOMY56QP1be02kcHXGiVKCIG6PHRxhmeLDtf-iz4rsIvAF--_sRFE_Ad1BBsiae-Bhvwy3dsoYr43bczfONj24XM1g7wM8zBtb6pj9BeYcsIx5t8iN5uJ6_j--H06e5hfDUdOp7odpjrwsk00VazzKVC5ImTuRJWWxA0I4mjhVM2J0zlLtFcq4w6KxyXBcsJETk_RBfru4vQLDuIral8dFCWtoami4alJFFSc0p79PwfOm-6UPffGaa4FlTTX4quKReaGAMUZhF8ZcO3ocSsfJuVb7PybTa--52zzeUuqyDfbvzZ7YHTNeABYDvWSvJUJvwH8IyDJg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xin, Cai</creator><creator>Xiao, Feng</creator><creator>Wei, Bo</creator><creator>Yu, Mei</creator><creator>Fang, Muhammad Noaman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5899-574X</orcidid><orcidid>https://orcid.org/0000-0002-8890-4383</orcidid><orcidid>https://orcid.org/0000-0003-3784-3696</orcidid><orcidid>https://orcid.org/0000-0002-2542-0082</orcidid></search><sort><creationdate>20230801</creationdate><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><author>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregative games</topic><topic>Algorithms</topic><topic>Cost function</topic><topic>Disturbances</topic><topic>external disturbances</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Linear systems</topic><topic>Nash equilibrium</topic><topic>Nash equilibrium (NE) seeking</topic><topic>Observers</topic><topic>Perturbation theory</topic><topic>Power system dynamics</topic><topic>Singular perturbation</topic><topic>Stability analysis</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Cai</creatorcontrib><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wei, Bo</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Fang, Muhammad Noaman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin, Cai</au><au>Xiao, Feng</au><au>Wei, Bo</au><au>Yu, Mei</au><au>Fang, Muhammad Noaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>53</volume><issue>8</issue><spage>5240</spage><epage>5249</epage><pages>5240-5249</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35984805</pmid><doi>10.1109/TCYB.2022.3195361</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5899-574X</orcidid><orcidid>https://orcid.org/0000-0002-8890-4383</orcidid><orcidid>https://orcid.org/0000-0003-3784-3696</orcidid><orcidid>https://orcid.org/0000-0002-2542-0082</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2023-08, Vol.53 (8), p.5240-5249 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_9863764 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregative games Algorithms Cost function Disturbances external disturbances Game theory Games Heuristic algorithms Linear systems Nash equilibrium Nash equilibrium (NE) seeking Observers Perturbation theory Power system dynamics Singular perturbation Stability analysis Strategy |
title | Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nash%20Equilibrium%20Seeking%20for%20General%20Linear%20Systems%20With%20Disturbance%20Rejection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Xin,%20Cai&rft.date=2023-08-01&rft.volume=53&rft.issue=8&rft.spage=5240&rft.epage=5249&rft.pages=5240-5249&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2022.3195361&rft_dat=%3Cproquest_RIE%3E2839519111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839519111&rft_id=info:pmid/35984805&rft_ieee_id=9863764&rfr_iscdi=true |