Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection

This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2023-08, Vol.53 (8), p.5240-5249
Hauptverfasser: Xin, Cai, Xiao, Feng, Wei, Bo, Yu, Mei, Fang, Muhammad Noaman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5249
container_issue 8
container_start_page 5240
container_title IEEE transactions on cybernetics
container_volume 53
creator Xin, Cai
Xiao, Feng
Wei, Bo
Yu, Mei
Fang, Muhammad Noaman
description This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.
doi_str_mv 10.1109/TCYB.2022.3195361
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9863764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9863764</ieee_id><sourcerecordid>2839519111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWtQfIIIEvHhpzWOTTY5a6wOKgg_EU8hmZ23qPtpk9-C_d2trD85lhplvhuFD6ISSEaVEX76OP65HjDA24lQLLukOGjAq1ZCxVOxua5keoOMY56QP1be02kcHXGiVKCIG6PHRxhmeLDtf-iz4rsIvAF--_sRFE_Ad1BBsiae-Bhvwy3dsoYr43bczfONj24XM1g7wM8zBtb6pj9BeYcsIx5t8iN5uJ6_j--H06e5hfDUdOp7odpjrwsk00VazzKVC5ImTuRJWWxA0I4mjhVM2J0zlLtFcq4w6KxyXBcsJETk_RBfru4vQLDuIral8dFCWtoami4alJFFSc0p79PwfOm-6UPffGaa4FlTTX4quKReaGAMUZhF8ZcO3ocSsfJuVb7PybTa--52zzeUuqyDfbvzZ7YHTNeABYDvWSvJUJvwH8IyDJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839519111</pqid></control><display><type>article</type><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><source>IEEE Electronic Library (IEL)</source><creator>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</creator><creatorcontrib>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</creatorcontrib><description>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2022.3195361</identifier><identifier>PMID: 35984805</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregative games ; Algorithms ; Cost function ; Disturbances ; external disturbances ; Game theory ; Games ; Heuristic algorithms ; Linear systems ; Nash equilibrium ; Nash equilibrium (NE) seeking ; Observers ; Perturbation theory ; Power system dynamics ; Singular perturbation ; Stability analysis ; Strategy</subject><ispartof>IEEE transactions on cybernetics, 2023-08, Vol.53 (8), p.5240-5249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</citedby><cites>FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</cites><orcidid>0000-0001-5899-574X ; 0000-0002-8890-4383 ; 0000-0003-3784-3696 ; 0000-0002-2542-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9863764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9863764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35984805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Cai</creatorcontrib><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wei, Bo</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Fang, Muhammad Noaman</creatorcontrib><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</description><subject>Aggregative games</subject><subject>Algorithms</subject><subject>Cost function</subject><subject>Disturbances</subject><subject>external disturbances</subject><subject>Game theory</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Linear systems</subject><subject>Nash equilibrium</subject><subject>Nash equilibrium (NE) seeking</subject><subject>Observers</subject><subject>Perturbation theory</subject><subject>Power system dynamics</subject><subject>Singular perturbation</subject><subject>Stability analysis</subject><subject>Strategy</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWtQfIIIEvHhpzWOTTY5a6wOKgg_EU8hmZ23qPtpk9-C_d2trD85lhplvhuFD6ISSEaVEX76OP65HjDA24lQLLukOGjAq1ZCxVOxua5keoOMY56QP1be02kcHXGiVKCIG6PHRxhmeLDtf-iz4rsIvAF--_sRFE_Ad1BBsiae-Bhvwy3dsoYr43bczfONj24XM1g7wM8zBtb6pj9BeYcsIx5t8iN5uJ6_j--H06e5hfDUdOp7odpjrwsk00VazzKVC5ImTuRJWWxA0I4mjhVM2J0zlLtFcq4w6KxyXBcsJETk_RBfru4vQLDuIral8dFCWtoami4alJFFSc0p79PwfOm-6UPffGaa4FlTTX4quKReaGAMUZhF8ZcO3ocSsfJuVb7PybTa--52zzeUuqyDfbvzZ7YHTNeABYDvWSvJUJvwH8IyDJg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xin, Cai</creator><creator>Xiao, Feng</creator><creator>Wei, Bo</creator><creator>Yu, Mei</creator><creator>Fang, Muhammad Noaman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5899-574X</orcidid><orcidid>https://orcid.org/0000-0002-8890-4383</orcidid><orcidid>https://orcid.org/0000-0003-3784-3696</orcidid><orcidid>https://orcid.org/0000-0002-2542-0082</orcidid></search><sort><creationdate>20230801</creationdate><title>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</title><author>Xin, Cai ; Xiao, Feng ; Wei, Bo ; Yu, Mei ; Fang, Muhammad Noaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9fc6749a92bc755d4c6d85a9ae51b04c1fc8ad028dc49398b1ca5c36f2d005d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregative games</topic><topic>Algorithms</topic><topic>Cost function</topic><topic>Disturbances</topic><topic>external disturbances</topic><topic>Game theory</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Linear systems</topic><topic>Nash equilibrium</topic><topic>Nash equilibrium (NE) seeking</topic><topic>Observers</topic><topic>Perturbation theory</topic><topic>Power system dynamics</topic><topic>Singular perturbation</topic><topic>Stability analysis</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Cai</creatorcontrib><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wei, Bo</creatorcontrib><creatorcontrib>Yu, Mei</creatorcontrib><creatorcontrib>Fang, Muhammad Noaman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin, Cai</au><au>Xiao, Feng</au><au>Wei, Bo</au><au>Yu, Mei</au><au>Fang, Muhammad Noaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>53</volume><issue>8</issue><spage>5240</spage><epage>5249</epage><pages>5240-5249</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This article explores aggregative games in a network of general linear systems subject to external disturbances. To deal with external disturbances, distributed strategy-updating rules based on the internal model are proposed for the case with perfect and imperfect information, respectively. Different from the existing algorithms based on gradient dynamics, by introducing the integral of the gradient of cost functions on the basis of the passivity theory, the rules are proposed to force the strategies of all agents to evolve to the Nash equilibrium, regardless of the effect of disturbances. The convergence of the two strategy-updating rules is analyzed via the Lyapunov stability theory, passivity theory, and singular perturbation theory. Simulations are performed to illustrate the effectiveness of the proposed methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35984805</pmid><doi>10.1109/TCYB.2022.3195361</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5899-574X</orcidid><orcidid>https://orcid.org/0000-0002-8890-4383</orcidid><orcidid>https://orcid.org/0000-0003-3784-3696</orcidid><orcidid>https://orcid.org/0000-0002-2542-0082</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2023-08, Vol.53 (8), p.5240-5249
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_9863764
source IEEE Electronic Library (IEL)
subjects Aggregative games
Algorithms
Cost function
Disturbances
external disturbances
Game theory
Games
Heuristic algorithms
Linear systems
Nash equilibrium
Nash equilibrium (NE) seeking
Observers
Perturbation theory
Power system dynamics
Singular perturbation
Stability analysis
Strategy
title Nash Equilibrium Seeking for General Linear Systems With Disturbance Rejection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nash%20Equilibrium%20Seeking%20for%20General%20Linear%20Systems%20With%20Disturbance%20Rejection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Xin,%20Cai&rft.date=2023-08-01&rft.volume=53&rft.issue=8&rft.spage=5240&rft.epage=5249&rft.pages=5240-5249&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2022.3195361&rft_dat=%3Cproquest_RIE%3E2839519111%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839519111&rft_id=info:pmid/35984805&rft_ieee_id=9863764&rfr_iscdi=true