A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants

This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation witho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2023-04, Vol.58 (4), p.1160-1171
Hauptverfasser: Tang, Junyao, Zhao, Lei, Huang, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue 4
container_start_page 1160
container_title IEEE journal of solid-state circuits
container_volume 58
creator Tang, Junyao
Zhao, Lei
Huang, Cheng
description This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.
doi_str_mv 10.1109/JSSC.2022.3197415
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9861386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9861386</ieee_id><sourcerecordid>2792135685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsfQLwEPG_N393kWGu1iqDYit6WNJ3QLdukJltkD353t7ToaWZ4v_cGHkKXlAwoJfrmaTodDRhhbMCpLgSVR6hHpVQZLfjnMeoRQlWmGSGn6CylVXcKoWgP_QzxRxWhhpTwpE0NRGgqi0fBNzHUNSz-5dfwDRHPovHJdct0R687uVnisV8abzt47FxlK_C2xcYv8F3rzbqLe4O0CT4BdiHi2ypU601tfJPO0YkzdYKLw-yj9_vxbDTJnl8eHkfD58wyzZvMCEWUoXqxKCSZWyasBG4Yk_lcCaLynGpbAJFE57lixIk5N1Y6obUQxNmC99H1PncTw9cWUlOuwjb67mXJCs0ol7mSHUX3lI0hpQiu3MRqbWJbUlLuWi53LZe7lstDy53nau-pAOCP1yqnXOX8F2rleYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792135685</pqid></control><display><type>article</type><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</creator><creatorcontrib>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</creatorcontrib><description>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3197415</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backscattering ; bioimplants ; Circuit design ; Coils ; Control systems ; Decoders ; Design ; Dynamic response ; Efficiency ; full integration ; Hysteresis ; hysteretic control ; load-transient responses ; Regulation ; Switches ; Systems design ; Transient response ; Voltage control ; voltage regulation ; Wireless communication ; wireless power transfer (WPT) ; Wireless power transmission ; Wireless sensor networks</subject><ispartof>IEEE journal of solid-state circuits, 2023-04, Vol.58 (4), p.1160-1171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</citedby><cites>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</cites><orcidid>0000-0001-8162-906X ; 0000-0003-2873-6274 ; 0000-0003-4371-7370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9861386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9861386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Junyao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</description><subject>Backscattering</subject><subject>bioimplants</subject><subject>Circuit design</subject><subject>Coils</subject><subject>Control systems</subject><subject>Decoders</subject><subject>Design</subject><subject>Dynamic response</subject><subject>Efficiency</subject><subject>full integration</subject><subject>Hysteresis</subject><subject>hysteretic control</subject><subject>load-transient responses</subject><subject>Regulation</subject><subject>Switches</subject><subject>Systems design</subject><subject>Transient response</subject><subject>Voltage control</subject><subject>voltage regulation</subject><subject>Wireless communication</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><subject>Wireless sensor networks</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE9LAzEQxYMoWKsfQLwEPG_N393kWGu1iqDYit6WNJ3QLdukJltkD353t7ToaWZ4v_cGHkKXlAwoJfrmaTodDRhhbMCpLgSVR6hHpVQZLfjnMeoRQlWmGSGn6CylVXcKoWgP_QzxRxWhhpTwpE0NRGgqi0fBNzHUNSz-5dfwDRHPovHJdct0R687uVnisV8abzt47FxlK_C2xcYv8F3rzbqLe4O0CT4BdiHi2ypU601tfJPO0YkzdYKLw-yj9_vxbDTJnl8eHkfD58wyzZvMCEWUoXqxKCSZWyasBG4Yk_lcCaLynGpbAJFE57lixIk5N1Y6obUQxNmC99H1PncTw9cWUlOuwjb67mXJCs0ol7mSHUX3lI0hpQiu3MRqbWJbUlLuWi53LZe7lstDy53nau-pAOCP1yqnXOX8F2rleYA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Tang, Junyao</creator><creator>Zhao, Lei</creator><creator>Huang, Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8162-906X</orcidid><orcidid>https://orcid.org/0000-0003-2873-6274</orcidid><orcidid>https://orcid.org/0000-0003-4371-7370</orcidid></search><sort><creationdate>20230401</creationdate><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><author>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Backscattering</topic><topic>bioimplants</topic><topic>Circuit design</topic><topic>Coils</topic><topic>Control systems</topic><topic>Decoders</topic><topic>Design</topic><topic>Dynamic response</topic><topic>Efficiency</topic><topic>full integration</topic><topic>Hysteresis</topic><topic>hysteretic control</topic><topic>load-transient responses</topic><topic>Regulation</topic><topic>Switches</topic><topic>Systems design</topic><topic>Transient response</topic><topic>Voltage control</topic><topic>voltage regulation</topic><topic>Wireless communication</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junyao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Junyao</au><au>Zhao, Lei</au><au>Huang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>58</volume><issue>4</issue><spage>1160</spage><epage>1171</epage><pages>1160-1171</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3197415</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8162-906X</orcidid><orcidid>https://orcid.org/0000-0003-2873-6274</orcidid><orcidid>https://orcid.org/0000-0003-4371-7370</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2023-04, Vol.58 (4), p.1160-1171
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_9861386
source IEEE Electronic Library (IEL)
subjects Backscattering
bioimplants
Circuit design
Coils
Control systems
Decoders
Design
Dynamic response
Efficiency
full integration
Hysteresis
hysteretic control
load-transient responses
Regulation
Switches
Systems design
Transient response
Voltage control
voltage regulation
Wireless communication
wireless power transfer (WPT)
Wireless power transmission
Wireless sensor networks
title A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wireless%20Hysteretic%20Controlled%20Wireless%20Power%20Transfer%20System%20With%20Enhanced%20Efficiency%20and%20Dynamic%20Response%20for%20Bioimplants&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Tang,%20Junyao&rft.date=2023-04-01&rft.volume=58&rft.issue=4&rft.spage=1160&rft.epage=1171&rft.pages=1160-1171&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3197415&rft_dat=%3Cproquest_RIE%3E2792135685%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792135685&rft_id=info:pmid/&rft_ieee_id=9861386&rfr_iscdi=true