A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants
This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation witho...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2023-04, Vol.58 (4), p.1160-1171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1171 |
---|---|
container_issue | 4 |
container_start_page | 1160 |
container_title | IEEE journal of solid-state circuits |
container_volume | 58 |
creator | Tang, Junyao Zhao, Lei Huang, Cheng |
description | This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop. |
doi_str_mv | 10.1109/JSSC.2022.3197415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9861386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9861386</ieee_id><sourcerecordid>2792135685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsfQLwEPG_N393kWGu1iqDYit6WNJ3QLdukJltkD353t7ToaWZ4v_cGHkKXlAwoJfrmaTodDRhhbMCpLgSVR6hHpVQZLfjnMeoRQlWmGSGn6CylVXcKoWgP_QzxRxWhhpTwpE0NRGgqi0fBNzHUNSz-5dfwDRHPovHJdct0R687uVnisV8abzt47FxlK_C2xcYv8F3rzbqLe4O0CT4BdiHi2ypU601tfJPO0YkzdYKLw-yj9_vxbDTJnl8eHkfD58wyzZvMCEWUoXqxKCSZWyasBG4Yk_lcCaLynGpbAJFE57lixIk5N1Y6obUQxNmC99H1PncTw9cWUlOuwjb67mXJCs0ol7mSHUX3lI0hpQiu3MRqbWJbUlLuWi53LZe7lstDy53nau-pAOCP1yqnXOX8F2rleYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792135685</pqid></control><display><type>article</type><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</creator><creatorcontrib>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</creatorcontrib><description>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2022.3197415</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backscattering ; bioimplants ; Circuit design ; Coils ; Control systems ; Decoders ; Design ; Dynamic response ; Efficiency ; full integration ; Hysteresis ; hysteretic control ; load-transient responses ; Regulation ; Switches ; Systems design ; Transient response ; Voltage control ; voltage regulation ; Wireless communication ; wireless power transfer (WPT) ; Wireless power transmission ; Wireless sensor networks</subject><ispartof>IEEE journal of solid-state circuits, 2023-04, Vol.58 (4), p.1160-1171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</citedby><cites>FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</cites><orcidid>0000-0001-8162-906X ; 0000-0003-2873-6274 ; 0000-0003-4371-7370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9861386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9861386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Junyao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</description><subject>Backscattering</subject><subject>bioimplants</subject><subject>Circuit design</subject><subject>Coils</subject><subject>Control systems</subject><subject>Decoders</subject><subject>Design</subject><subject>Dynamic response</subject><subject>Efficiency</subject><subject>full integration</subject><subject>Hysteresis</subject><subject>hysteretic control</subject><subject>load-transient responses</subject><subject>Regulation</subject><subject>Switches</subject><subject>Systems design</subject><subject>Transient response</subject><subject>Voltage control</subject><subject>voltage regulation</subject><subject>Wireless communication</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><subject>Wireless sensor networks</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE9LAzEQxYMoWKsfQLwEPG_N393kWGu1iqDYit6WNJ3QLdukJltkD353t7ToaWZ4v_cGHkKXlAwoJfrmaTodDRhhbMCpLgSVR6hHpVQZLfjnMeoRQlWmGSGn6CylVXcKoWgP_QzxRxWhhpTwpE0NRGgqi0fBNzHUNSz-5dfwDRHPovHJdct0R687uVnisV8abzt47FxlK_C2xcYv8F3rzbqLe4O0CT4BdiHi2ypU601tfJPO0YkzdYKLw-yj9_vxbDTJnl8eHkfD58wyzZvMCEWUoXqxKCSZWyasBG4Yk_lcCaLynGpbAJFE57lixIk5N1Y6obUQxNmC99H1PncTw9cWUlOuwjb67mXJCs0ol7mSHUX3lI0hpQiu3MRqbWJbUlLuWi53LZe7lstDy53nau-pAOCP1yqnXOX8F2rleYA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Tang, Junyao</creator><creator>Zhao, Lei</creator><creator>Huang, Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8162-906X</orcidid><orcidid>https://orcid.org/0000-0003-2873-6274</orcidid><orcidid>https://orcid.org/0000-0003-4371-7370</orcidid></search><sort><creationdate>20230401</creationdate><title>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</title><author>Tang, Junyao ; Zhao, Lei ; Huang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a4808a19dd750bc24c5e3a2256b84086619c7e050966820f4b3ac5f499440fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Backscattering</topic><topic>bioimplants</topic><topic>Circuit design</topic><topic>Coils</topic><topic>Control systems</topic><topic>Decoders</topic><topic>Design</topic><topic>Dynamic response</topic><topic>Efficiency</topic><topic>full integration</topic><topic>Hysteresis</topic><topic>hysteretic control</topic><topic>load-transient responses</topic><topic>Regulation</topic><topic>Switches</topic><topic>Systems design</topic><topic>Transient response</topic><topic>Voltage control</topic><topic>voltage regulation</topic><topic>Wireless communication</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junyao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Junyao</au><au>Zhao, Lei</au><au>Huang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>58</volume><issue>4</issue><spage>1160</spage><epage>1171</epage><pages>1160-1171</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a 6.78-MHz wireless power transfer (WPT) system with system-level wireless hysteretic control technique and circuit-level designs for both the receiver (RX) and transmitter (TX) chips. The proposed system achieves RX local voltage regulation and TX global power regulation without using any off-chip components (e.g., MCU, DAC, or various controllers and decoders) nor TX current sensing coils, which were required in previous works. A higher light-load efficiency and instant load-transient response are also achieved with the proposed wireless hysteretic control because of its operation principle. To further improve the efficiency, dynamic switch timing calibrations in the active rectifier in the RX are also designed, with resolved dual steady-state operation issues during the transitions between on-/off-delay compensations. Both the RX and TX chips have been fabricated in 180-nm standard CMOS. Measurement results show a 68.9% peak end-to-end (E2E) efficiency, with an up-to-20% enhancement at light-load conditions over a previous non-linearly controlled WPT system design. When compared to the other state-of-the-art designs, this work achieves an overall higher E2E efficiency, unnoticeable under-/over-shoots with instant recovery in load transients, and a lower system complexity with a higher level of integration without using any extra components other than the LCs to close the wireless loop.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2022.3197415</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8162-906X</orcidid><orcidid>https://orcid.org/0000-0003-2873-6274</orcidid><orcidid>https://orcid.org/0000-0003-4371-7370</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2023-04, Vol.58 (4), p.1160-1171 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_9861386 |
source | IEEE Electronic Library (IEL) |
subjects | Backscattering bioimplants Circuit design Coils Control systems Decoders Design Dynamic response Efficiency full integration Hysteresis hysteretic control load-transient responses Regulation Switches Systems design Transient response Voltage control voltage regulation Wireless communication wireless power transfer (WPT) Wireless power transmission Wireless sensor networks |
title | A Wireless Hysteretic Controlled Wireless Power Transfer System With Enhanced Efficiency and Dynamic Response for Bioimplants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wireless%20Hysteretic%20Controlled%20Wireless%20Power%20Transfer%20System%20With%20Enhanced%20Efficiency%20and%20Dynamic%20Response%20for%20Bioimplants&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Tang,%20Junyao&rft.date=2023-04-01&rft.volume=58&rft.issue=4&rft.spage=1160&rft.epage=1171&rft.pages=1160-1171&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2022.3197415&rft_dat=%3Cproquest_RIE%3E2792135685%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792135685&rft_id=info:pmid/&rft_ieee_id=9861386&rfr_iscdi=true |