Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates
Driver observation models are rarely deployed under perfect conditions. In practice, illumination, camera placement and type differ from the ones present during training and unforeseen behaviours may occur at any time. While observing the human behind the steering wheel leads to more intuitive human...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-12, Vol.23 (12), p.25271-25286 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25286 |
---|---|
container_issue | 12 |
container_start_page | 25271 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Roitberg, Alina Peng, Kunyu Schneider, David Yang, Kailun Koulakis, Marios Martinez, Manuel Stiefelhagen, Rainer |
description | Driver observation models are rarely deployed under perfect conditions. In practice, illumination, camera placement and type differ from the ones present during training and unforeseen behaviours may occur at any time. While observing the human behind the steering wheel leads to more intuitive human-vehicle-interaction and safer driving, it requires recognition algorithms which do not only predict the correct driver state, but also determine their prediction quality through realistic and interpretable confidence measures. Reliable uncertainty estimates are crucial for building trust and are a serious obstacle for deploying activity recognition networks in real driving systems. In this work, we for the first time examine how well the confidence values of modern driver observation models indeed match the probability of the correct outcome and show that raw neural network-based approaches tend to significantly overestimate their prediction quality. To correct this misalignment between the confidence values and the actual uncertainty, we consider two strategies. First, we enhance two activity recognition models often used for driver observation with temperature scaling - an off-the-shelf method for confidence calibration in image classification. Then, we introduce Calibrated Action Recognition with Input Guidance (CARING) - a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation. Extensive experiments on the Drive&Act dataset demonstrate that both strategies drastically improve the quality of model confidences, while our CARING model outperforms both, the original architectures and their temperature scaling enhancement, leading to best uncertainty estimates. |
doi_str_mv | 10.1109/TITS.2022.3196410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9857619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857619</ieee_id><sourcerecordid>2747612040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-eac5c472e7ee63ead26c8b1b085b0a16d10a94257b8ad9966d96b4284675e2243</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOKc_QHwJ-NyZpEnaPInMOQubA53PJW1uobO2NUkne_aPm9rh0809fOfccILgmuAZIVjebdPt24xiSmcRkYIRfBJMCOdJiDERp8ObslBijs-DC2t3XmWckEnwk1q0PqBHU-3BoE1uweyVq9oGrVsNNdp4uWibstLQuHuUNl3vwmXvV43mqq5yM9Iv4L5b82FR2Rr0CnWl8hqQarS3ODCdAfenzI9ZBaCFddWncmAvg7NS1RaujnMavD8ttvPncLVZpvOHVVhQGrkQVMELFlOIAUQESlNRJDnJccJzrIjQBCvJKI_zRGkphdBS5IwmTMQcKGXRNLgdczvTfvVgXbZre9P4kxmNWSwIxQx7ioxUYVprDZRZZ_w_zSEjOBu6zoaus6Hr7Ni199yMngoA_nmZcB8qo1_idXw1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747612040</pqid></control><display><type>article</type><title>Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates</title><source>IEEE Electronic Library (IEL)</source><creator>Roitberg, Alina ; Peng, Kunyu ; Schneider, David ; Yang, Kailun ; Koulakis, Marios ; Martinez, Manuel ; Stiefelhagen, Rainer</creator><creatorcontrib>Roitberg, Alina ; Peng, Kunyu ; Schneider, David ; Yang, Kailun ; Koulakis, Marios ; Martinez, Manuel ; Stiefelhagen, Rainer</creatorcontrib><description>Driver observation models are rarely deployed under perfect conditions. In practice, illumination, camera placement and type differ from the ones present during training and unforeseen behaviours may occur at any time. While observing the human behind the steering wheel leads to more intuitive human-vehicle-interaction and safer driving, it requires recognition algorithms which do not only predict the correct driver state, but also determine their prediction quality through realistic and interpretable confidence measures. Reliable uncertainty estimates are crucial for building trust and are a serious obstacle for deploying activity recognition networks in real driving systems. In this work, we for the first time examine how well the confidence values of modern driver observation models indeed match the probability of the correct outcome and show that raw neural network-based approaches tend to significantly overestimate their prediction quality. To correct this misalignment between the confidence values and the actual uncertainty, we consider two strategies. First, we enhance two activity recognition models often used for driver observation with temperature scaling - an off-the-shelf method for confidence calibration in image classification. Then, we introduce Calibrated Action Recognition with Input Guidance (CARING) - a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation. Extensive experiments on the Drive&Act dataset demonstrate that both strategies drastically improve the quality of model confidences, while our CARING model outperforms both, the original architectures and their temperature scaling enhancement, leading to best uncertainty estimates.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3196410</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Algorithms ; Calibration ; Driver activity recognition ; Estimates ; Image classification ; Misalignment ; model confidence reliability ; Neural networks ; Object recognition ; Predictive models ; Reliability ; Scaling ; Steering wheels ; Uncertainty ; uncertainty in deep learning ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25271-25286</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-eac5c472e7ee63ead26c8b1b085b0a16d10a94257b8ad9966d96b4284675e2243</citedby><cites>FETCH-LOGICAL-c223t-eac5c472e7ee63ead26c8b1b085b0a16d10a94257b8ad9966d96b4284675e2243</cites><orcidid>0000-0002-1090-667X ; 0000-0002-9324-4447 ; 0000-0002-5419-9292 ; 0000-0001-6020-7618 ; 0000-0003-4724-9164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9857619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Peng, Kunyu</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Yang, Kailun</creatorcontrib><creatorcontrib>Koulakis, Marios</creatorcontrib><creatorcontrib>Martinez, Manuel</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><title>Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Driver observation models are rarely deployed under perfect conditions. In practice, illumination, camera placement and type differ from the ones present during training and unforeseen behaviours may occur at any time. While observing the human behind the steering wheel leads to more intuitive human-vehicle-interaction and safer driving, it requires recognition algorithms which do not only predict the correct driver state, but also determine their prediction quality through realistic and interpretable confidence measures. Reliable uncertainty estimates are crucial for building trust and are a serious obstacle for deploying activity recognition networks in real driving systems. In this work, we for the first time examine how well the confidence values of modern driver observation models indeed match the probability of the correct outcome and show that raw neural network-based approaches tend to significantly overestimate their prediction quality. To correct this misalignment between the confidence values and the actual uncertainty, we consider two strategies. First, we enhance two activity recognition models often used for driver observation with temperature scaling - an off-the-shelf method for confidence calibration in image classification. Then, we introduce Calibrated Action Recognition with Input Guidance (CARING) - a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation. Extensive experiments on the Drive&Act dataset demonstrate that both strategies drastically improve the quality of model confidences, while our CARING model outperforms both, the original architectures and their temperature scaling enhancement, leading to best uncertainty estimates.</description><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Driver activity recognition</subject><subject>Estimates</subject><subject>Image classification</subject><subject>Misalignment</subject><subject>model confidence reliability</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Predictive models</subject><subject>Reliability</subject><subject>Scaling</subject><subject>Steering wheels</subject><subject>Uncertainty</subject><subject>uncertainty in deep learning</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOKc_QHwJ-NyZpEnaPInMOQubA53PJW1uobO2NUkne_aPm9rh0809fOfccILgmuAZIVjebdPt24xiSmcRkYIRfBJMCOdJiDERp8ObslBijs-DC2t3XmWckEnwk1q0PqBHU-3BoE1uweyVq9oGrVsNNdp4uWibstLQuHuUNl3vwmXvV43mqq5yM9Iv4L5b82FR2Rr0CnWl8hqQarS3ODCdAfenzI9ZBaCFddWncmAvg7NS1RaujnMavD8ttvPncLVZpvOHVVhQGrkQVMELFlOIAUQESlNRJDnJccJzrIjQBCvJKI_zRGkphdBS5IwmTMQcKGXRNLgdczvTfvVgXbZre9P4kxmNWSwIxQx7ioxUYVprDZRZZ_w_zSEjOBu6zoaus6Hr7Ni199yMngoA_nmZcB8qo1_idXw1</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Roitberg, Alina</creator><creator>Peng, Kunyu</creator><creator>Schneider, David</creator><creator>Yang, Kailun</creator><creator>Koulakis, Marios</creator><creator>Martinez, Manuel</creator><creator>Stiefelhagen, Rainer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1090-667X</orcidid><orcidid>https://orcid.org/0000-0002-9324-4447</orcidid><orcidid>https://orcid.org/0000-0002-5419-9292</orcidid><orcidid>https://orcid.org/0000-0001-6020-7618</orcidid><orcidid>https://orcid.org/0000-0003-4724-9164</orcidid></search><sort><creationdate>20221201</creationdate><title>Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates</title><author>Roitberg, Alina ; Peng, Kunyu ; Schneider, David ; Yang, Kailun ; Koulakis, Marios ; Martinez, Manuel ; Stiefelhagen, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-eac5c472e7ee63ead26c8b1b085b0a16d10a94257b8ad9966d96b4284675e2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Driver activity recognition</topic><topic>Estimates</topic><topic>Image classification</topic><topic>Misalignment</topic><topic>model confidence reliability</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Predictive models</topic><topic>Reliability</topic><topic>Scaling</topic><topic>Steering wheels</topic><topic>Uncertainty</topic><topic>uncertainty in deep learning</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roitberg, Alina</creatorcontrib><creatorcontrib>Peng, Kunyu</creatorcontrib><creatorcontrib>Schneider, David</creatorcontrib><creatorcontrib>Yang, Kailun</creatorcontrib><creatorcontrib>Koulakis, Marios</creatorcontrib><creatorcontrib>Martinez, Manuel</creatorcontrib><creatorcontrib>Stiefelhagen, Rainer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roitberg, Alina</au><au>Peng, Kunyu</au><au>Schneider, David</au><au>Yang, Kailun</au><au>Koulakis, Marios</au><au>Martinez, Manuel</au><au>Stiefelhagen, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>12</issue><spage>25271</spage><epage>25286</epage><pages>25271-25286</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Driver observation models are rarely deployed under perfect conditions. In practice, illumination, camera placement and type differ from the ones present during training and unforeseen behaviours may occur at any time. While observing the human behind the steering wheel leads to more intuitive human-vehicle-interaction and safer driving, it requires recognition algorithms which do not only predict the correct driver state, but also determine their prediction quality through realistic and interpretable confidence measures. Reliable uncertainty estimates are crucial for building trust and are a serious obstacle for deploying activity recognition networks in real driving systems. In this work, we for the first time examine how well the confidence values of modern driver observation models indeed match the probability of the correct outcome and show that raw neural network-based approaches tend to significantly overestimate their prediction quality. To correct this misalignment between the confidence values and the actual uncertainty, we consider two strategies. First, we enhance two activity recognition models often used for driver observation with temperature scaling - an off-the-shelf method for confidence calibration in image classification. Then, we introduce Calibrated Action Recognition with Input Guidance (CARING) - a novel approach leveraging an additional neural network to learn scaling the confidences depending on the video representation. Extensive experiments on the Drive&Act dataset demonstrate that both strategies drastically improve the quality of model confidences, while our CARING model outperforms both, the original architectures and their temperature scaling enhancement, leading to best uncertainty estimates.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3196410</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1090-667X</orcidid><orcidid>https://orcid.org/0000-0002-9324-4447</orcidid><orcidid>https://orcid.org/0000-0002-5419-9292</orcidid><orcidid>https://orcid.org/0000-0001-6020-7618</orcidid><orcidid>https://orcid.org/0000-0003-4724-9164</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25271-25286 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_9857619 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Algorithms Calibration Driver activity recognition Estimates Image classification Misalignment model confidence reliability Neural networks Object recognition Predictive models Reliability Scaling Steering wheels Uncertainty uncertainty in deep learning Vehicles |
title | Is My Driver Observation Model Overconfident? Input-Guided Calibration Networks for Reliable and Interpretable Confidence Estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20My%20Driver%20Observation%20Model%20Overconfident?%20Input-Guided%20Calibration%20Networks%20for%20Reliable%20and%20Interpretable%20Confidence%20Estimates&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Roitberg,%20Alina&rft.date=2022-12-01&rft.volume=23&rft.issue=12&rft.spage=25271&rft.epage=25286&rft.pages=25271-25286&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3196410&rft_dat=%3Cproquest_RIE%3E2747612040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747612040&rft_id=info:pmid/&rft_ieee_id=9857619&rfr_iscdi=true |