Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON

During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2023-03, Vol.20 (1), p.3-13
Hauptverfasser: Biswas, Pramit, Akhtar, Md Shahbaz, Saha, Sriparna, Majhi, Sudhan, Adhya, Aneek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 3
container_title IEEE eTransactions on network and service management
container_volume 20
creator Biswas, Pramit
Akhtar, Md Shahbaz
Saha, Sriparna
Majhi, Sudhan
Adhya, Aneek
description During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.
doi_str_mv 10.1109/TNSM.2022.3197329
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9852748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9852748</ieee_id><sourcerecordid>2785446931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAYhNJNYufj-WBQWoVNoiytpyErtKKU6xU1D_nkStEKuZxbl3RgeAa4xGGCN9t5y9vYwIImREsZaU6BMwwJoSyDiVp__2c3CR0hohrrAmAzB-hVNnY6jDCt7b5KosDy6u9jD3vi5rF9ps5tqfJn5ki40NPZfVIZss4PzbRZjPZ5fgzNtNclfHOQTvj_ny4RlO50-Th_EUlpSKFhbCWowIE7SiApWcUm0logphryznmrmi0qUuOJEcE8mkF5XyTuhCas0kp0Nwe-jdxuZr51Jr1s0uhu6kIVJxxoSmuKPwgSpjk1J03mxj_Wnj3mBkelOmN2V6U-ZoqsvcHDK1c-6P16p7hSn6CxddYaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446931</pqid></control><display><type>article</type><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><source>IEEE Electronic Library (IEL)</source><creator>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</creator><creatorcontrib>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</creatorcontrib><description>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3197329</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer networks ; Demand ; Elastic optical network ; Heuristic ; IP (Internet Protocol) ; IP networks ; Mathematical programming ; Optical communication ; Optical fiber networks ; Optimization ; Optimization models ; Planning ; Power consumption ; Provisioning ; Q-learning ; reinforcement learning ; Resource allocation ; Resource management ; Routing ; Teaching methods ; Traffic planning ; Wave division multiplexing ; Wavelength division multiplexing</subject><ispartof>IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.3-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</citedby><cites>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</cites><orcidid>0000-0001-5494-9391 ; 0000-0002-4242-929X ; 0000-0002-2142-1862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9852748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9852748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biswas, Pramit</creatorcontrib><creatorcontrib>Akhtar, Md Shahbaz</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Majhi, Sudhan</creatorcontrib><creatorcontrib>Adhya, Aneek</creatorcontrib><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</description><subject>Computer networks</subject><subject>Demand</subject><subject>Elastic optical network</subject><subject>Heuristic</subject><subject>IP (Internet Protocol)</subject><subject>IP networks</subject><subject>Mathematical programming</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Planning</subject><subject>Power consumption</subject><subject>Provisioning</subject><subject>Q-learning</subject><subject>reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Routing</subject><subject>Teaching methods</subject><subject>Traffic planning</subject><subject>Wave division multiplexing</subject><subject>Wavelength division multiplexing</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAYhNJNYufj-WBQWoVNoiytpyErtKKU6xU1D_nkStEKuZxbl3RgeAa4xGGCN9t5y9vYwIImREsZaU6BMwwJoSyDiVp__2c3CR0hohrrAmAzB-hVNnY6jDCt7b5KosDy6u9jD3vi5rF9ps5tqfJn5ki40NPZfVIZss4PzbRZjPZ5fgzNtNclfHOQTvj_ny4RlO50-Th_EUlpSKFhbCWowIE7SiApWcUm0logphryznmrmi0qUuOJEcE8mkF5XyTuhCas0kp0Nwe-jdxuZr51Jr1s0uhu6kIVJxxoSmuKPwgSpjk1J03mxj_Wnj3mBkelOmN2V6U-ZoqsvcHDK1c-6P16p7hSn6CxddYaM</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Biswas, Pramit</creator><creator>Akhtar, Md Shahbaz</creator><creator>Saha, Sriparna</creator><creator>Majhi, Sudhan</creator><creator>Adhya, Aneek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5494-9391</orcidid><orcidid>https://orcid.org/0000-0002-4242-929X</orcidid><orcidid>https://orcid.org/0000-0002-2142-1862</orcidid></search><sort><creationdate>202303</creationdate><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><author>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer networks</topic><topic>Demand</topic><topic>Elastic optical network</topic><topic>Heuristic</topic><topic>IP (Internet Protocol)</topic><topic>IP networks</topic><topic>Mathematical programming</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Planning</topic><topic>Power consumption</topic><topic>Provisioning</topic><topic>Q-learning</topic><topic>reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Routing</topic><topic>Teaching methods</topic><topic>Traffic planning</topic><topic>Wave division multiplexing</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Pramit</creatorcontrib><creatorcontrib>Akhtar, Md Shahbaz</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Majhi, Sudhan</creatorcontrib><creatorcontrib>Adhya, Aneek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biswas, Pramit</au><au>Akhtar, Md Shahbaz</au><au>Saha, Sriparna</au><au>Majhi, Sudhan</au><au>Adhya, Aneek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-03</date><risdate>2023</risdate><volume>20</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3197329</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5494-9391</orcidid><orcidid>https://orcid.org/0000-0002-4242-929X</orcidid><orcidid>https://orcid.org/0000-0002-2142-1862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.3-13
issn 1932-4537
1932-4537
language eng
recordid cdi_ieee_primary_9852748
source IEEE Electronic Library (IEL)
subjects Computer networks
Demand
Elastic optical network
Heuristic
IP (Internet Protocol)
IP networks
Mathematical programming
Optical communication
Optical fiber networks
Optimization
Optimization models
Planning
Power consumption
Provisioning
Q-learning
reinforcement learning
Resource allocation
Resource management
Routing
Teaching methods
Traffic planning
Wave division multiplexing
Wavelength division multiplexing
title Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Q-Learning-Based%20Energy-Efficient%20Network%20Planning%20in%20IP-Over-EON&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Biswas,%20Pramit&rft.date=2023-03&rft.volume=20&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3197329&rft_dat=%3Cproquest_RIE%3E2785446931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446931&rft_id=info:pmid/&rft_ieee_id=9852748&rfr_iscdi=true