Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON
During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network d...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-03, Vol.20 (1), p.3-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | IEEE eTransactions on network and service management |
container_volume | 20 |
creator | Biswas, Pramit Akhtar, Md Shahbaz Saha, Sriparna Majhi, Sudhan Adhya, Aneek |
description | During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method. |
doi_str_mv | 10.1109/TNSM.2022.3197329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9852748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9852748</ieee_id><sourcerecordid>2785446931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAYhNJNYufj-WBQWoVNoiytpyErtKKU6xU1D_nkStEKuZxbl3RgeAa4xGGCN9t5y9vYwIImREsZaU6BMwwJoSyDiVp__2c3CR0hohrrAmAzB-hVNnY6jDCt7b5KosDy6u9jD3vi5rF9ps5tqfJn5ki40NPZfVIZss4PzbRZjPZ5fgzNtNclfHOQTvj_ny4RlO50-Th_EUlpSKFhbCWowIE7SiApWcUm0logphryznmrmi0qUuOJEcE8mkF5XyTuhCas0kp0Nwe-jdxuZr51Jr1s0uhu6kIVJxxoSmuKPwgSpjk1J03mxj_Wnj3mBkelOmN2V6U-ZoqsvcHDK1c-6P16p7hSn6CxddYaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446931</pqid></control><display><type>article</type><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><source>IEEE Electronic Library (IEL)</source><creator>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</creator><creatorcontrib>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</creatorcontrib><description>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3197329</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer networks ; Demand ; Elastic optical network ; Heuristic ; IP (Internet Protocol) ; IP networks ; Mathematical programming ; Optical communication ; Optical fiber networks ; Optimization ; Optimization models ; Planning ; Power consumption ; Provisioning ; Q-learning ; reinforcement learning ; Resource allocation ; Resource management ; Routing ; Teaching methods ; Traffic planning ; Wave division multiplexing ; Wavelength division multiplexing</subject><ispartof>IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.3-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</citedby><cites>FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</cites><orcidid>0000-0001-5494-9391 ; 0000-0002-4242-929X ; 0000-0002-2142-1862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9852748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9852748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biswas, Pramit</creatorcontrib><creatorcontrib>Akhtar, Md Shahbaz</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Majhi, Sudhan</creatorcontrib><creatorcontrib>Adhya, Aneek</creatorcontrib><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</description><subject>Computer networks</subject><subject>Demand</subject><subject>Elastic optical network</subject><subject>Heuristic</subject><subject>IP (Internet Protocol)</subject><subject>IP networks</subject><subject>Mathematical programming</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Planning</subject><subject>Power consumption</subject><subject>Provisioning</subject><subject>Q-learning</subject><subject>reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Routing</subject><subject>Teaching methods</subject><subject>Traffic planning</subject><subject>Wave division multiplexing</subject><subject>Wavelength division multiplexing</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAYhNJNYufj-WBQWoVNoiytpyErtKKU6xU1D_nkStEKuZxbl3RgeAa4xGGCN9t5y9vYwIImREsZaU6BMwwJoSyDiVp__2c3CR0hohrrAmAzB-hVNnY6jDCt7b5KosDy6u9jD3vi5rF9ps5tqfJn5ki40NPZfVIZss4PzbRZjPZ5fgzNtNclfHOQTvj_ny4RlO50-Th_EUlpSKFhbCWowIE7SiApWcUm0logphryznmrmi0qUuOJEcE8mkF5XyTuhCas0kp0Nwe-jdxuZr51Jr1s0uhu6kIVJxxoSmuKPwgSpjk1J03mxj_Wnj3mBkelOmN2V6U-ZoqsvcHDK1c-6P16p7hSn6CxddYaM</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Biswas, Pramit</creator><creator>Akhtar, Md Shahbaz</creator><creator>Saha, Sriparna</creator><creator>Majhi, Sudhan</creator><creator>Adhya, Aneek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5494-9391</orcidid><orcidid>https://orcid.org/0000-0002-4242-929X</orcidid><orcidid>https://orcid.org/0000-0002-2142-1862</orcidid></search><sort><creationdate>202303</creationdate><title>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</title><author>Biswas, Pramit ; Akhtar, Md Shahbaz ; Saha, Sriparna ; Majhi, Sudhan ; Adhya, Aneek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b6aa102463d360c5339a703801f8a5594ebd9c9b527512747f6d8fe69b7994753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer networks</topic><topic>Demand</topic><topic>Elastic optical network</topic><topic>Heuristic</topic><topic>IP (Internet Protocol)</topic><topic>IP networks</topic><topic>Mathematical programming</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Planning</topic><topic>Power consumption</topic><topic>Provisioning</topic><topic>Q-learning</topic><topic>reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Routing</topic><topic>Teaching methods</topic><topic>Traffic planning</topic><topic>Wave division multiplexing</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Pramit</creatorcontrib><creatorcontrib>Akhtar, Md Shahbaz</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Majhi, Sudhan</creatorcontrib><creatorcontrib>Adhya, Aneek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biswas, Pramit</au><au>Akhtar, Md Shahbaz</au><au>Saha, Sriparna</au><au>Majhi, Sudhan</au><au>Adhya, Aneek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-03</date><risdate>2023</risdate><volume>20</volume><issue>1</issue><spage>3</spage><epage>13</epage><pages>3-13</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>During network planning phase, optimal network planning implemented through efficient resource allocation and static traffic demand provisioning in IP-over-elastic optical network (IP-over-EON) is significantly challenging compared with the fixed-grid wavelength division multiplexing (WDM) network due to increased flexibility in IP-over-EON. Mathematical programming based optimization models used for this purpose may not provide solution for large networks due to large computational complexity. In this regard, a greedy heuristic may be used that intuitively selects traffic elements in sequence from static traffic demand matrix and provisions the traffic elements after necessary resource allocation. However, in general, such greedy heuristics offer suboptimal solutions, since appropriate traffic sequence offering the optimal performance is rarely selected. In this regard, we propose a reinforcement learning technique (in particular a Q-learning method), combined with an auxiliary graph (AG)-based energy efficient greedy method to be used for large network planning. The Q-learning method is used to decide the suitable sequence of traffic allocation such that the overall power consumption in the network reduces. In the proposed heuristic, each traffic from the given static traffic demand matrix is successively selected using the Q-learning method and provisioned using the AG-based greedy method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3197329</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5494-9391</orcidid><orcidid>https://orcid.org/0000-0002-4242-929X</orcidid><orcidid>https://orcid.org/0000-0002-2142-1862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.3-13 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_ieee_primary_9852748 |
source | IEEE Electronic Library (IEL) |
subjects | Computer networks Demand Elastic optical network Heuristic IP (Internet Protocol) IP networks Mathematical programming Optical communication Optical fiber networks Optimization Optimization models Planning Power consumption Provisioning Q-learning reinforcement learning Resource allocation Resource management Routing Teaching methods Traffic planning Wave division multiplexing Wavelength division multiplexing |
title | Q-Learning-Based Energy-Efficient Network Planning in IP-Over-EON |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Q-Learning-Based%20Energy-Efficient%20Network%20Planning%20in%20IP-Over-EON&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Biswas,%20Pramit&rft.date=2023-03&rft.volume=20&rft.issue=1&rft.spage=3&rft.epage=13&rft.pages=3-13&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3197329&rft_dat=%3Cproquest_RIE%3E2785446931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446931&rft_id=info:pmid/&rft_ieee_id=9852748&rfr_iscdi=true |