Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression
The point cloud is one of the indispensable data structures of virtual and mixed reality applications. Vivid scene requirement means that millions of points need to be encoded while transmitting these point clouds. Therefore, a highly efficient point cloud compression (PCC) technology is the key to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2023-01, Vol.33 (1), p.407-420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 1 |
container_start_page | 407 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 33 |
creator | Wei, Ziwei Niu, Benben Xiao, Haodong He, Yun |
description | The point cloud is one of the indispensable data structures of virtual and mixed reality applications. Vivid scene requirement means that millions of points need to be encoded while transmitting these point clouds. Therefore, a highly efficient point cloud compression (PCC) technology is the key to promote the above applications. In the tree structure geometry partition based PCC framework, nodes of the tree containing isolated points are further subdivided. This sub-division decreases the compression ratio. Furthermore, the location uncertainty of the isolated points makes the above coding very challenging. In this paper, we propose a deep neural network model to predict the isolated points. These point clouds are generated by LiDAR in the autonomous driving applications. The proposed neural network model includes nodes feature extraction modules and parent-child nodes feature aggregation modules. The nodes feature extraction modules extract the hierarchical features from the inputs generated from the current node or its ancestor nodes. The parent-child nodes feature aggregation modules aggregate the hierarchical feature maps of the parent node and the current node. Finally, this proposed neural network model suggests the probability that the current node contains the isolated points. As a result, the nodes containing isolated points will not be further subdivided. The experimental results show that, compared with the latest isolated points prediction method, the accuracy of the proposed isolated points prediction neural network model is much higher on average. Compared with the state-of-the-art, the proposed model can achieve 5.29% bpip coding gain on average on lossless geometry point cloud compression. |
doi_str_mv | 10.1109/TCSVT.2022.3197370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9852261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9852261</ieee_id><sourcerecordid>2761375558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1d0c44d11dc483d38255ff67c014cf03bae55905fe85fbbe643511102a7430423</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFr2mcJQq0VKqgEoWtlToTKSWtg52A-ve4D7Ga0fjeO-NDyC1nI85Z9rDM3z-XI8GEGEmepTJlZ2TAAXQiBIPz2DPgiRYcLslVCGvGuNIqHRAzC64pOizpwtXbLtCFx7K2Xe229Kcu6BNiS1-x90UTS_fr_BeNTwcxzRvXl3TuQmgwBDpFt8HO72juNq2PkxhyTS6qogl4c6pD8jF5XuYvyfxtOssf54kVGXQJL5lVquS8tErLUmoBUFXj1MY7bcXkqkCAjEGFGqrVCsdKAo8_F0WqJFNCDsn9Mbf17rvH0Jm16_02rjQiHXOZQoQRVeKosj4e7bEyra83hd8ZzswepDmANHuQ5gQymu6OphoR_w2ZBiFi8B9DzW8e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761375558</pqid></control><display><type>article</type><title>Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Ziwei ; Niu, Benben ; Xiao, Haodong ; He, Yun</creator><creatorcontrib>Wei, Ziwei ; Niu, Benben ; Xiao, Haodong ; He, Yun</creatorcontrib><description>The point cloud is one of the indispensable data structures of virtual and mixed reality applications. Vivid scene requirement means that millions of points need to be encoded while transmitting these point clouds. Therefore, a highly efficient point cloud compression (PCC) technology is the key to promote the above applications. In the tree structure geometry partition based PCC framework, nodes of the tree containing isolated points are further subdivided. This sub-division decreases the compression ratio. Furthermore, the location uncertainty of the isolated points makes the above coding very challenging. In this paper, we propose a deep neural network model to predict the isolated points. These point clouds are generated by LiDAR in the autonomous driving applications. The proposed neural network model includes nodes feature extraction modules and parent-child nodes feature aggregation modules. The nodes feature extraction modules extract the hierarchical features from the inputs generated from the current node or its ancestor nodes. The parent-child nodes feature aggregation modules aggregate the hierarchical feature maps of the parent node and the current node. Finally, this proposed neural network model suggests the probability that the current node contains the isolated points. As a result, the nodes containing isolated points will not be further subdivided. The experimental results show that, compared with the latest isolated points prediction method, the accuracy of the proposed isolated points prediction neural network model is much higher on average. Compared with the state-of-the-art, the proposed model can achieve 5.29% bpip coding gain on average on lossless geometry point cloud compression.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3197370</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Artificial neural networks ; Codes ; Coding ; Compression ratio ; Data structures ; deep neural network ; Feature extraction ; Feature maps ; Geometry ; hierarchical feature extraction ; Isolated points prediction ; Laser radar ; LiDAR point cloud compression ; Mixed reality ; Modules ; Neural networks ; Nodes ; Point cloud compression ; Predictive models ; Virtual reality</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-01, Vol.33 (1), p.407-420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1d0c44d11dc483d38255ff67c014cf03bae55905fe85fbbe643511102a7430423</citedby><cites>FETCH-LOGICAL-c295t-1d0c44d11dc483d38255ff67c014cf03bae55905fe85fbbe643511102a7430423</cites><orcidid>0000-0002-8561-5009 ; 0000-0001-5049-6444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9852261$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9852261$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Ziwei</creatorcontrib><creatorcontrib>Niu, Benben</creatorcontrib><creatorcontrib>Xiao, Haodong</creatorcontrib><creatorcontrib>He, Yun</creatorcontrib><title>Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The point cloud is one of the indispensable data structures of virtual and mixed reality applications. Vivid scene requirement means that millions of points need to be encoded while transmitting these point clouds. Therefore, a highly efficient point cloud compression (PCC) technology is the key to promote the above applications. In the tree structure geometry partition based PCC framework, nodes of the tree containing isolated points are further subdivided. This sub-division decreases the compression ratio. Furthermore, the location uncertainty of the isolated points makes the above coding very challenging. In this paper, we propose a deep neural network model to predict the isolated points. These point clouds are generated by LiDAR in the autonomous driving applications. The proposed neural network model includes nodes feature extraction modules and parent-child nodes feature aggregation modules. The nodes feature extraction modules extract the hierarchical features from the inputs generated from the current node or its ancestor nodes. The parent-child nodes feature aggregation modules aggregate the hierarchical feature maps of the parent node and the current node. Finally, this proposed neural network model suggests the probability that the current node contains the isolated points. As a result, the nodes containing isolated points will not be further subdivided. The experimental results show that, compared with the latest isolated points prediction method, the accuracy of the proposed isolated points prediction neural network model is much higher on average. Compared with the state-of-the-art, the proposed model can achieve 5.29% bpip coding gain on average on lossless geometry point cloud compression.</description><subject>Agglomeration</subject><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Coding</subject><subject>Compression ratio</subject><subject>Data structures</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Geometry</subject><subject>hierarchical feature extraction</subject><subject>Isolated points prediction</subject><subject>Laser radar</subject><subject>LiDAR point cloud compression</subject><subject>Mixed reality</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Point cloud compression</subject><subject>Predictive models</subject><subject>Virtual reality</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFr2mcJQq0VKqgEoWtlToTKSWtg52A-ve4D7Ga0fjeO-NDyC1nI85Z9rDM3z-XI8GEGEmepTJlZ2TAAXQiBIPz2DPgiRYcLslVCGvGuNIqHRAzC64pOizpwtXbLtCFx7K2Xe229Kcu6BNiS1-x90UTS_fr_BeNTwcxzRvXl3TuQmgwBDpFt8HO72juNq2PkxhyTS6qogl4c6pD8jF5XuYvyfxtOssf54kVGXQJL5lVquS8tErLUmoBUFXj1MY7bcXkqkCAjEGFGqrVCsdKAo8_F0WqJFNCDsn9Mbf17rvH0Jm16_02rjQiHXOZQoQRVeKosj4e7bEyra83hd8ZzswepDmANHuQ5gQymu6OphoR_w2ZBiFi8B9DzW8e</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wei, Ziwei</creator><creator>Niu, Benben</creator><creator>Xiao, Haodong</creator><creator>He, Yun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8561-5009</orcidid><orcidid>https://orcid.org/0000-0001-5049-6444</orcidid></search><sort><creationdate>202301</creationdate><title>Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression</title><author>Wei, Ziwei ; Niu, Benben ; Xiao, Haodong ; He, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1d0c44d11dc483d38255ff67c014cf03bae55905fe85fbbe643511102a7430423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Coding</topic><topic>Compression ratio</topic><topic>Data structures</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Geometry</topic><topic>hierarchical feature extraction</topic><topic>Isolated points prediction</topic><topic>Laser radar</topic><topic>LiDAR point cloud compression</topic><topic>Mixed reality</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Point cloud compression</topic><topic>Predictive models</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Ziwei</creatorcontrib><creatorcontrib>Niu, Benben</creatorcontrib><creatorcontrib>Xiao, Haodong</creatorcontrib><creatorcontrib>He, Yun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Ziwei</au><au>Niu, Benben</au><au>Xiao, Haodong</au><au>He, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>407</spage><epage>420</epage><pages>407-420</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The point cloud is one of the indispensable data structures of virtual and mixed reality applications. Vivid scene requirement means that millions of points need to be encoded while transmitting these point clouds. Therefore, a highly efficient point cloud compression (PCC) technology is the key to promote the above applications. In the tree structure geometry partition based PCC framework, nodes of the tree containing isolated points are further subdivided. This sub-division decreases the compression ratio. Furthermore, the location uncertainty of the isolated points makes the above coding very challenging. In this paper, we propose a deep neural network model to predict the isolated points. These point clouds are generated by LiDAR in the autonomous driving applications. The proposed neural network model includes nodes feature extraction modules and parent-child nodes feature aggregation modules. The nodes feature extraction modules extract the hierarchical features from the inputs generated from the current node or its ancestor nodes. The parent-child nodes feature aggregation modules aggregate the hierarchical feature maps of the parent node and the current node. Finally, this proposed neural network model suggests the probability that the current node contains the isolated points. As a result, the nodes containing isolated points will not be further subdivided. The experimental results show that, compared with the latest isolated points prediction method, the accuracy of the proposed isolated points prediction neural network model is much higher on average. Compared with the state-of-the-art, the proposed model can achieve 5.29% bpip coding gain on average on lossless geometry point cloud compression.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3197370</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8561-5009</orcidid><orcidid>https://orcid.org/0000-0001-5049-6444</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2023-01, Vol.33 (1), p.407-420 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_9852261 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Artificial neural networks Codes Coding Compression ratio Data structures deep neural network Feature extraction Feature maps Geometry hierarchical feature extraction Isolated points prediction Laser radar LiDAR point cloud compression Mixed reality Modules Neural networks Nodes Point cloud compression Predictive models Virtual reality |
title | Isolated Points Prediction via Deep Neural Network on Point Cloud Lossless Geometry Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolated%20Points%20Prediction%20via%20Deep%20Neural%20Network%20on%20Point%20Cloud%20Lossless%20Geometry%20Compression&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Wei,%20Ziwei&rft.date=2023-01&rft.volume=33&rft.issue=1&rft.spage=407&rft.epage=420&rft.pages=407-420&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3197370&rft_dat=%3Cproquest_RIE%3E2761375558%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761375558&rft_id=info:pmid/&rft_ieee_id=9852261&rfr_iscdi=true |