Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems

The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.82788-82798
Hauptverfasser: Nguyen, Van Duc, Thi, Hoai Linh Nguyen, Nguyen, Quoc Khuong, Nguyen, Tien Hoa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82798
container_issue
container_start_page 82788
container_title IEEE access
container_volume 10
creator Nguyen, Van Duc
Thi, Hoai Linh Nguyen
Nguyen, Quoc Khuong
Nguyen, Tien Hoa
description The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.
doi_str_mv 10.1109/ACCESS.2022.3196641
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9851433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9851433</ieee_id><doaj_id>oai_doaj_org_article_95a6fc05dd794b648365cb99aea50f42</doaj_id><sourcerecordid>2703102397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuETinOJH7MTHElqoVOih7dna2A5y1cTFTlX697ikQuzBXq1nxjuaJHnAaIQxEk_jqposlyOCCBlRLDjP8UVyQzAXGWWUX_7rr5P7EDYoVhlHrLhJ3Nwd0sq1u635tv0x_XBdtu5s43ybTqerNDbpi9vFZ_8LM12A3routV26mL68Z88QjE7XnTb-AH1EjZXbh96qE7zdd1YN-OUx9KYNd8lVA9tg7s_3bbKeTlbVWzZfvM6q8TxTlJZ9xrjmGIRmjaqbWkEJqlbRLSXxZAa00To6Lerc6CZXmpGyprGAAGZYE3qbzAZd7WAjd9624I_SgZW_A-c_Jfi45dZIwYA3CjGtC5HXPC8pZ6oWAgww1OQnrcdBa-fd196EXm7c3ndxfUkKRDEiVBQRRQeU8i4Eb5q_XzGSp6DkEJQ8BSXPQUXWw8Cyxpg_higZzqOdHzYYkAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703102397</pqid></control><display><type>article</type><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</creator><creatorcontrib>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</creatorcontrib><description>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3196641</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Communication ; Communications systems ; Compensation ; Complexity ; Doppler effect ; Doppler frequency shift estimation and compensation ; Doppler shift ; Fast Fourier transformations ; Fourier transforms ; Impulse response ; interchannel interference ; non-uniform fast Fourier transform ; OFDM ; Orthogonal Frequency Division Multiplexing ; Orthogonality ; Performance degradation ; Phase noise ; Receivers ; Symbols ; Synchronization ; underwater acoustic communications ; Underwater acoustics ; Underwater communication</subject><ispartof>IEEE access, 2022, Vol.10, p.82788-82798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</citedby><cites>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</cites><orcidid>0000-0002-9533-4390 ; 0000-0003-4743-5012 ; 0000-0003-1414-4032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9851433$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Van Duc</creatorcontrib><creatorcontrib>Thi, Hoai Linh Nguyen</creatorcontrib><creatorcontrib>Nguyen, Quoc Khuong</creatorcontrib><creatorcontrib>Nguyen, Tien Hoa</creatorcontrib><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</description><subject>Channel estimation</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Compensation</subject><subject>Complexity</subject><subject>Doppler effect</subject><subject>Doppler frequency shift estimation and compensation</subject><subject>Doppler shift</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Impulse response</subject><subject>interchannel interference</subject><subject>non-uniform fast Fourier transform</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Orthogonality</subject><subject>Performance degradation</subject><subject>Phase noise</subject><subject>Receivers</subject><subject>Symbols</subject><subject>Synchronization</subject><subject>underwater acoustic communications</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuETinOJH7MTHElqoVOih7dna2A5y1cTFTlX697ikQuzBXq1nxjuaJHnAaIQxEk_jqposlyOCCBlRLDjP8UVyQzAXGWWUX_7rr5P7EDYoVhlHrLhJ3Nwd0sq1u635tv0x_XBdtu5s43ybTqerNDbpi9vFZ_8LM12A3routV26mL68Z88QjE7XnTb-AH1EjZXbh96qE7zdd1YN-OUx9KYNd8lVA9tg7s_3bbKeTlbVWzZfvM6q8TxTlJZ9xrjmGIRmjaqbWkEJqlbRLSXxZAa00To6Lerc6CZXmpGyprGAAGZYE3qbzAZd7WAjd9624I_SgZW_A-c_Jfi45dZIwYA3CjGtC5HXPC8pZ6oWAgww1OQnrcdBa-fd196EXm7c3ndxfUkKRDEiVBQRRQeU8i4Eb5q_XzGSp6DkEJQ8BSXPQUXWw8Cyxpg_higZzqOdHzYYkAg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Van Duc</creator><creator>Thi, Hoai Linh Nguyen</creator><creator>Nguyen, Quoc Khuong</creator><creator>Nguyen, Tien Hoa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9533-4390</orcidid><orcidid>https://orcid.org/0000-0003-4743-5012</orcidid><orcidid>https://orcid.org/0000-0003-1414-4032</orcidid></search><sort><creationdate>2022</creationdate><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><author>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel estimation</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Compensation</topic><topic>Complexity</topic><topic>Doppler effect</topic><topic>Doppler frequency shift estimation and compensation</topic><topic>Doppler shift</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Impulse response</topic><topic>interchannel interference</topic><topic>non-uniform fast Fourier transform</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Orthogonality</topic><topic>Performance degradation</topic><topic>Phase noise</topic><topic>Receivers</topic><topic>Symbols</topic><topic>Synchronization</topic><topic>underwater acoustic communications</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Duc</creatorcontrib><creatorcontrib>Thi, Hoai Linh Nguyen</creatorcontrib><creatorcontrib>Nguyen, Quoc Khuong</creatorcontrib><creatorcontrib>Nguyen, Tien Hoa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van Duc</au><au>Thi, Hoai Linh Nguyen</au><au>Nguyen, Quoc Khuong</au><au>Nguyen, Tien Hoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>82788</spage><epage>82798</epage><pages>82788-82798</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3196641</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9533-4390</orcidid><orcidid>https://orcid.org/0000-0003-4743-5012</orcidid><orcidid>https://orcid.org/0000-0003-1414-4032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.82788-82798
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9851433
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Channel estimation
Communication
Communications systems
Compensation
Complexity
Doppler effect
Doppler frequency shift estimation and compensation
Doppler shift
Fast Fourier transformations
Fourier transforms
Impulse response
interchannel interference
non-uniform fast Fourier transform
OFDM
Orthogonal Frequency Division Multiplexing
Orthogonality
Performance degradation
Phase noise
Receivers
Symbols
Synchronization
underwater acoustic communications
Underwater acoustics
Underwater communication
title Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Complexity%20Non-Uniform%20FFT%20for%20Doppler%20Compensation%20in%20OFDM-Based%20Underwater%20Acoustic%20Communication%20Systems&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Van%20Duc&rft.date=2022&rft.volume=10&rft.spage=82788&rft.epage=82798&rft.pages=82788-82798&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3196641&rft_dat=%3Cproquest_ieee_%3E2703102397%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703102397&rft_id=info:pmid/&rft_ieee_id=9851433&rft_doaj_id=oai_doaj_org_article_95a6fc05dd794b648365cb99aea50f42&rfr_iscdi=true