Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems
The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.82788-82798 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82798 |
---|---|
container_issue | |
container_start_page | 82788 |
container_title | IEEE access |
container_volume | 10 |
creator | Nguyen, Van Duc Thi, Hoai Linh Nguyen Nguyen, Quoc Khuong Nguyen, Tien Hoa |
description | The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations. |
doi_str_mv | 10.1109/ACCESS.2022.3196641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9851433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9851433</ieee_id><doaj_id>oai_doaj_org_article_95a6fc05dd794b648365cb99aea50f42</doaj_id><sourcerecordid>2703102397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuETinOJH7MTHElqoVOih7dna2A5y1cTFTlX697ikQuzBXq1nxjuaJHnAaIQxEk_jqposlyOCCBlRLDjP8UVyQzAXGWWUX_7rr5P7EDYoVhlHrLhJ3Nwd0sq1u635tv0x_XBdtu5s43ybTqerNDbpi9vFZ_8LM12A3routV26mL68Z88QjE7XnTb-AH1EjZXbh96qE7zdd1YN-OUx9KYNd8lVA9tg7s_3bbKeTlbVWzZfvM6q8TxTlJZ9xrjmGIRmjaqbWkEJqlbRLSXxZAa00To6Lerc6CZXmpGyprGAAGZYE3qbzAZd7WAjd9624I_SgZW_A-c_Jfi45dZIwYA3CjGtC5HXPC8pZ6oWAgww1OQnrcdBa-fd196EXm7c3ndxfUkKRDEiVBQRRQeU8i4Eb5q_XzGSp6DkEJQ8BSXPQUXWw8Cyxpg_higZzqOdHzYYkAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703102397</pqid></control><display><type>article</type><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</creator><creatorcontrib>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</creatorcontrib><description>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3196641</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Communication ; Communications systems ; Compensation ; Complexity ; Doppler effect ; Doppler frequency shift estimation and compensation ; Doppler shift ; Fast Fourier transformations ; Fourier transforms ; Impulse response ; interchannel interference ; non-uniform fast Fourier transform ; OFDM ; Orthogonal Frequency Division Multiplexing ; Orthogonality ; Performance degradation ; Phase noise ; Receivers ; Symbols ; Synchronization ; underwater acoustic communications ; Underwater acoustics ; Underwater communication</subject><ispartof>IEEE access, 2022, Vol.10, p.82788-82798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</citedby><cites>FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</cites><orcidid>0000-0002-9533-4390 ; 0000-0003-4743-5012 ; 0000-0003-1414-4032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9851433$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Van Duc</creatorcontrib><creatorcontrib>Thi, Hoai Linh Nguyen</creatorcontrib><creatorcontrib>Nguyen, Quoc Khuong</creatorcontrib><creatorcontrib>Nguyen, Tien Hoa</creatorcontrib><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</description><subject>Channel estimation</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Compensation</subject><subject>Complexity</subject><subject>Doppler effect</subject><subject>Doppler frequency shift estimation and compensation</subject><subject>Doppler shift</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Impulse response</subject><subject>interchannel interference</subject><subject>non-uniform fast Fourier transform</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Orthogonality</subject><subject>Performance degradation</subject><subject>Phase noise</subject><subject>Receivers</subject><subject>Symbols</subject><subject>Synchronization</subject><subject>underwater acoustic communications</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuETinOJH7MTHElqoVOih7dna2A5y1cTFTlX697ikQuzBXq1nxjuaJHnAaIQxEk_jqposlyOCCBlRLDjP8UVyQzAXGWWUX_7rr5P7EDYoVhlHrLhJ3Nwd0sq1u635tv0x_XBdtu5s43ybTqerNDbpi9vFZ_8LM12A3routV26mL68Z88QjE7XnTb-AH1EjZXbh96qE7zdd1YN-OUx9KYNd8lVA9tg7s_3bbKeTlbVWzZfvM6q8TxTlJZ9xrjmGIRmjaqbWkEJqlbRLSXxZAa00To6Lerc6CZXmpGyprGAAGZYE3qbzAZd7WAjd9624I_SgZW_A-c_Jfi45dZIwYA3CjGtC5HXPC8pZ6oWAgww1OQnrcdBa-fd196EXm7c3ndxfUkKRDEiVBQRRQeU8i4Eb5q_XzGSp6DkEJQ8BSXPQUXWw8Cyxpg_higZzqOdHzYYkAg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Van Duc</creator><creator>Thi, Hoai Linh Nguyen</creator><creator>Nguyen, Quoc Khuong</creator><creator>Nguyen, Tien Hoa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9533-4390</orcidid><orcidid>https://orcid.org/0000-0003-4743-5012</orcidid><orcidid>https://orcid.org/0000-0003-1414-4032</orcidid></search><sort><creationdate>2022</creationdate><title>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</title><author>Nguyen, Van Duc ; Thi, Hoai Linh Nguyen ; Nguyen, Quoc Khuong ; Nguyen, Tien Hoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-56d61a9d5fcbfbca8acbc11032c115eadedd9667b4edf4cd528b3333a2a151d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel estimation</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Compensation</topic><topic>Complexity</topic><topic>Doppler effect</topic><topic>Doppler frequency shift estimation and compensation</topic><topic>Doppler shift</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Impulse response</topic><topic>interchannel interference</topic><topic>non-uniform fast Fourier transform</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Orthogonality</topic><topic>Performance degradation</topic><topic>Phase noise</topic><topic>Receivers</topic><topic>Symbols</topic><topic>Synchronization</topic><topic>underwater acoustic communications</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Duc</creatorcontrib><creatorcontrib>Thi, Hoai Linh Nguyen</creatorcontrib><creatorcontrib>Nguyen, Quoc Khuong</creatorcontrib><creatorcontrib>Nguyen, Tien Hoa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van Duc</au><au>Thi, Hoai Linh Nguyen</au><au>Nguyen, Quoc Khuong</au><au>Nguyen, Tien Hoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>82788</spage><epage>82798</epage><pages>82788-82798</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Doppler effect critically degrades the performance of orthogonal frequency division multiplexing (OFDM) systems in general. This problem is significantly worse for underwater acoustic (UWA) communication systems due to the distinct characteristics of the underwater channel, resulting in the loss of orthogonality among sub-carriers. In order to compensate Doppler shifts, including phase noise and multipath channels in realistic communication scenarios, the joint of channel estimation and ICI reduction is often performed. However, the accuracy depends on the channel estimation and the FFT size, while this leads to increased computational complexity at the receiver. To achieve this dual goal in the actual underwater communication environment, a novel pilot structure in the frequency domain has been applied to overcome the channel impulse response (CIR) variation in a block period. The coarse Doppler shift is firstly estimated by using the received pilot signal. Afterward, the study takes advantage of the flexibility provided by non-uniform fast Fourier transform (NFFT) in choosing the sampling points to construct a fast and stable Doppler frequency Compensation Matrix-based NFFT (DCMN) to fine compensate the Doppler phase shift. Finally, this study shows the improvement of the proposed method's performance by actual experimental measurements and simulations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3196641</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9533-4390</orcidid><orcidid>https://orcid.org/0000-0003-4743-5012</orcidid><orcidid>https://orcid.org/0000-0003-1414-4032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.82788-82798 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9851433 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Channel estimation Communication Communications systems Compensation Complexity Doppler effect Doppler frequency shift estimation and compensation Doppler shift Fast Fourier transformations Fourier transforms Impulse response interchannel interference non-uniform fast Fourier transform OFDM Orthogonal Frequency Division Multiplexing Orthogonality Performance degradation Phase noise Receivers Symbols Synchronization underwater acoustic communications Underwater acoustics Underwater communication |
title | Low Complexity Non-Uniform FFT for Doppler Compensation in OFDM-Based Underwater Acoustic Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Complexity%20Non-Uniform%20FFT%20for%20Doppler%20Compensation%20in%20OFDM-Based%20Underwater%20Acoustic%20Communication%20Systems&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Van%20Duc&rft.date=2022&rft.volume=10&rft.spage=82788&rft.epage=82798&rft.pages=82788-82798&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3196641&rft_dat=%3Cproquest_ieee_%3E2703102397%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703102397&rft_id=info:pmid/&rft_ieee_id=9851433&rft_doaj_id=oai_doaj_org_article_95a6fc05dd794b648365cb99aea50f42&rfr_iscdi=true |