CEVGMM: Computationally Efficient Versatile Generic Memristor Model

A memristor is a passive circuit element that has numerous applications ranging from storage to processing. The attributes of memristor, such as low power, fast switching speed, and non-volatility, make it a promising candidate for computing applications. To deploy the memristors at the circuit leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2022-11, Vol.30 (11), p.1794-1802
Hauptverfasser: Zafar, Mubeen, Naeem Awais, Muhammad, Shehzad, Muhammad Naeem, Javed, Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1802
container_issue 11
container_start_page 1794
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 30
creator Zafar, Mubeen
Naeem Awais, Muhammad
Shehzad, Muhammad Naeem
Javed, Abbas
description A memristor is a passive circuit element that has numerous applications ranging from storage to processing. The attributes of memristor, such as low power, fast switching speed, and non-volatility, make it a promising candidate for computing applications. To deploy the memristors at the circuit level, a versatile, computationally efficient, and generic model is required to analyze the circuit performance. This article presents a computationally inexpensive, generic, and accurate phenomenological model of the memristor. The proposed model predicts an accurate current-voltage ( I - V ) relationship based on the current conduction mechanism. The presented modeling technique can be incorporated into any practical memristor behavior by optimizing the fitting parameters. The model has the capability to optimize its accuracy and computational efficiency by calibrating the model parameters. The results are compared with the characterization data of numerous memristors and noteworthy models of memristors to validate the proposed approach. The results depict that the proposed model is more flexible, computationally efficient, versatile, and generic. It improves the simulation run time up to 24.47% with the relative root mean squared error of 0.4142%. The model exhibits remarkable results when compared with titanium dioxide-based devices. The proposed model can be deployed to various applications, such as logic design, memory design, and neuromorphic computing.
doi_str_mv 10.1109/TVLSI.2022.3194251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9849486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9849486</ieee_id><sourcerecordid>2727045059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-1c11ae2497acbac6c1723341d845c21183a0867b50a2e3bff547c12cef93bab63</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtfQC8Lnrdm8md3402WWgtdPFh7Ddl0Ainbbk22h357U1ucywyP94bHj5BHoBMAql6Wq8XXfMIoYxMOSjAJV2QEUpa5SnOdblrwvGJAb8ldjBtKQQhFR6Sup6tZ07xmdb_dHwYz-H5nuu6YTZ3z1uNuyFYYYtI7zGa4w-Bt1uA2-Dj0IWv6NXb35MaZLuLDZY_J9_t0WX_ki8_ZvH5b5BbKYsjBAhhkQpXGtsYWSWWcC1hXQloGUHFDq6JsJTUMeeucFKUFZtEp3pq24GPyfP67D_3PAeOgN_0hpLpRs5KVVEgqVXKxs8uGPsaATu-D35pw1ED1CZb-g6VPsPQFVgo9nUMeEf8DqhJKVAX_BVYbZQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045059</pqid></control><display><type>article</type><title>CEVGMM: Computationally Efficient Versatile Generic Memristor Model</title><source>IEEE Electronic Library (IEL)</source><creator>Zafar, Mubeen ; Naeem Awais, Muhammad ; Shehzad, Muhammad Naeem ; Javed, Abbas</creator><creatorcontrib>Zafar, Mubeen ; Naeem Awais, Muhammad ; Shehzad, Muhammad Naeem ; Javed, Abbas</creatorcontrib><description><![CDATA[A memristor is a passive circuit element that has numerous applications ranging from storage to processing. The attributes of memristor, such as low power, fast switching speed, and non-volatility, make it a promising candidate for computing applications. To deploy the memristors at the circuit level, a versatile, computationally efficient, and generic model is required to analyze the circuit performance. This article presents a computationally inexpensive, generic, and accurate phenomenological model of the memristor. The proposed model predicts an accurate current-voltage (<inline-formula> <tex-math notation="LaTeX">I </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>) relationship based on the current conduction mechanism. The presented modeling technique can be incorporated into any practical memristor behavior by optimizing the fitting parameters. The model has the capability to optimize its accuracy and computational efficiency by calibrating the model parameters. The results are compared with the characterization data of numerous memristors and noteworthy models of memristors to validate the proposed approach. The results depict that the proposed model is more flexible, computationally efficient, versatile, and generic. It improves the simulation run time up to 24.47% with the relative root mean squared error of 0.4142%. The model exhibits remarkable results when compared with titanium dioxide-based devices. The proposed model can be deployed to various applications, such as logic design, memory design, and neuromorphic computing.]]></description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2022.3194251</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Circuits ; Computational efficiency ; Computational modeling ; Integrated circuit modeling ; Logic design ; Mathematical modeling ; Mathematical models ; memristor ; Memristors ; Optimization ; Parameters ; Resistance ; resistive switching ; Switches ; Titanium dioxide ; window function</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2022-11, Vol.30 (11), p.1794-1802</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-1c11ae2497acbac6c1723341d845c21183a0867b50a2e3bff547c12cef93bab63</cites><orcidid>0000-0002-5904-1662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9849486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9849486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zafar, Mubeen</creatorcontrib><creatorcontrib>Naeem Awais, Muhammad</creatorcontrib><creatorcontrib>Shehzad, Muhammad Naeem</creatorcontrib><creatorcontrib>Javed, Abbas</creatorcontrib><title>CEVGMM: Computationally Efficient Versatile Generic Memristor Model</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description><![CDATA[A memristor is a passive circuit element that has numerous applications ranging from storage to processing. The attributes of memristor, such as low power, fast switching speed, and non-volatility, make it a promising candidate for computing applications. To deploy the memristors at the circuit level, a versatile, computationally efficient, and generic model is required to analyze the circuit performance. This article presents a computationally inexpensive, generic, and accurate phenomenological model of the memristor. The proposed model predicts an accurate current-voltage (<inline-formula> <tex-math notation="LaTeX">I </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>) relationship based on the current conduction mechanism. The presented modeling technique can be incorporated into any practical memristor behavior by optimizing the fitting parameters. The model has the capability to optimize its accuracy and computational efficiency by calibrating the model parameters. The results are compared with the characterization data of numerous memristors and noteworthy models of memristors to validate the proposed approach. The results depict that the proposed model is more flexible, computationally efficient, versatile, and generic. It improves the simulation run time up to 24.47% with the relative root mean squared error of 0.4142%. The model exhibits remarkable results when compared with titanium dioxide-based devices. The proposed model can be deployed to various applications, such as logic design, memory design, and neuromorphic computing.]]></description><subject>Adaptation models</subject><subject>Circuits</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Integrated circuit modeling</subject><subject>Logic design</subject><subject>Mathematical modeling</subject><subject>Mathematical models</subject><subject>memristor</subject><subject>Memristors</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Resistance</subject><subject>resistive switching</subject><subject>Switches</subject><subject>Titanium dioxide</subject><subject>window function</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKtfQC8Lnrdm8md3402WWgtdPFh7Ddl0Ainbbk22h357U1ucywyP94bHj5BHoBMAql6Wq8XXfMIoYxMOSjAJV2QEUpa5SnOdblrwvGJAb8ldjBtKQQhFR6Sup6tZ07xmdb_dHwYz-H5nuu6YTZ3z1uNuyFYYYtI7zGa4w-Bt1uA2-Dj0IWv6NXb35MaZLuLDZY_J9_t0WX_ki8_ZvH5b5BbKYsjBAhhkQpXGtsYWSWWcC1hXQloGUHFDq6JsJTUMeeucFKUFZtEp3pq24GPyfP67D_3PAeOgN_0hpLpRs5KVVEgqVXKxs8uGPsaATu-D35pw1ED1CZb-g6VPsPQFVgo9nUMeEf8DqhJKVAX_BVYbZQo</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zafar, Mubeen</creator><creator>Naeem Awais, Muhammad</creator><creator>Shehzad, Muhammad Naeem</creator><creator>Javed, Abbas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5904-1662</orcidid></search><sort><creationdate>20221101</creationdate><title>CEVGMM: Computationally Efficient Versatile Generic Memristor Model</title><author>Zafar, Mubeen ; Naeem Awais, Muhammad ; Shehzad, Muhammad Naeem ; Javed, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-1c11ae2497acbac6c1723341d845c21183a0867b50a2e3bff547c12cef93bab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Circuits</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Integrated circuit modeling</topic><topic>Logic design</topic><topic>Mathematical modeling</topic><topic>Mathematical models</topic><topic>memristor</topic><topic>Memristors</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Resistance</topic><topic>resistive switching</topic><topic>Switches</topic><topic>Titanium dioxide</topic><topic>window function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Mubeen</creatorcontrib><creatorcontrib>Naeem Awais, Muhammad</creatorcontrib><creatorcontrib>Shehzad, Muhammad Naeem</creatorcontrib><creatorcontrib>Javed, Abbas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zafar, Mubeen</au><au>Naeem Awais, Muhammad</au><au>Shehzad, Muhammad Naeem</au><au>Javed, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CEVGMM: Computationally Efficient Versatile Generic Memristor Model</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>30</volume><issue>11</issue><spage>1794</spage><epage>1802</epage><pages>1794-1802</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>ITCOB4</coden><abstract><![CDATA[A memristor is a passive circuit element that has numerous applications ranging from storage to processing. The attributes of memristor, such as low power, fast switching speed, and non-volatility, make it a promising candidate for computing applications. To deploy the memristors at the circuit level, a versatile, computationally efficient, and generic model is required to analyze the circuit performance. This article presents a computationally inexpensive, generic, and accurate phenomenological model of the memristor. The proposed model predicts an accurate current-voltage (<inline-formula> <tex-math notation="LaTeX">I </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula>) relationship based on the current conduction mechanism. The presented modeling technique can be incorporated into any practical memristor behavior by optimizing the fitting parameters. The model has the capability to optimize its accuracy and computational efficiency by calibrating the model parameters. The results are compared with the characterization data of numerous memristors and noteworthy models of memristors to validate the proposed approach. The results depict that the proposed model is more flexible, computationally efficient, versatile, and generic. It improves the simulation run time up to 24.47% with the relative root mean squared error of 0.4142%. The model exhibits remarkable results when compared with titanium dioxide-based devices. The proposed model can be deployed to various applications, such as logic design, memory design, and neuromorphic computing.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2022.3194251</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5904-1662</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2022-11, Vol.30 (11), p.1794-1802
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_9849486
source IEEE Electronic Library (IEL)
subjects Adaptation models
Circuits
Computational efficiency
Computational modeling
Integrated circuit modeling
Logic design
Mathematical modeling
Mathematical models
memristor
Memristors
Optimization
Parameters
Resistance
resistive switching
Switches
Titanium dioxide
window function
title CEVGMM: Computationally Efficient Versatile Generic Memristor Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CEVGMM:%20Computationally%20Efficient%20Versatile%20Generic%20Memristor%20Model&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Zafar,%20Mubeen&rft.date=2022-11-01&rft.volume=30&rft.issue=11&rft.spage=1794&rft.epage=1802&rft.pages=1794-1802&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TVLSI.2022.3194251&rft_dat=%3Cproquest_RIE%3E2727045059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045059&rft_id=info:pmid/&rft_ieee_id=9849486&rfr_iscdi=true