Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN
In this article, partially depleted silicon on insulator (PD-SOI) FinFET based LIF neuron is demonstrated to mimic biological neuronal behaviour with aid of well-calibrated 3D TCAD simulation. The floating body effect of PD-SOI FinFET is used to store the holes generated by the impact ionisation (...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2022, Vol.21, p.434-441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | |
container_start_page | 434 |
container_title | IEEE transactions on nanotechnology |
container_volume | 21 |
creator | Rajakumari, V Pradhan, K P |
description | In this article, partially depleted silicon on insulator (PD-SOI) FinFET based LIF neuron is demonstrated to mimic biological neuronal behaviour with aid of well-calibrated 3D TCAD simulation. The floating body effect of PD-SOI FinFET is used to store the holes generated by the impact ionisation ('II'), which exhibits the integration phenomenon and recombination manifests the leaky function. It shows 5.4 fJ of energy per spike, which is significantly lower than other FinFET based neurons reported till date. Moreover, it needs only 1.8 V of supply voltage, which is lower as compared to its equivalent bulk FinFET and PD-SOI MOSFET based LIF neurons. The proposed PD-SOI FinFET LIF neuron shows megahertz range of spiking frequency, that is \sim 10 ^{5}× higher than biological neuron (\sim1-10 Hz). Furthermore, the effective area of the FinFET is optimized as 0.023 \mum ^{2}. Thus, the proposed PD-SOI FinFET based LIF neuron is more attractive for large scale hardware implementation of SNN, due to its energy and area efficiency comparable with biological neuron along with CMOS compatibility. |
doi_str_mv | 10.1109/TNANO.2022.3195698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9847408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9847408</ieee_id><sourcerecordid>2703099026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1033ccfe9a7f54e3750a4280904f38a6ba938545b4fd40ce18f854dbd293f53f3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhejiYj-Ab1p4vXw9GtrLxFBMcswARLvmrK1ZgRWbEcM_94ixKtz3uR9zkmeJLnHMMAY5NOiHJazAQFCBhRLnklxkfSwZDgFEPwy7pxmKSb88zq5CWENgPOMi17y_mK2rg2d113jWuQs0i1abmIu3A8at8Z_HdDHSzqfTdGkaSfjBXrWwdSomE5QafY-QtZ5NC_L2-TK6k0wd-fZT5axPnpLi9nrdDQs0opI3qUYKK0qa6TOLWeG5hw0IwIkMEuFzlZaUsEZXzFbM6gMFjbGelUTSS2nlvaTx9PdnXffexM6tXZ738aXiuRAQUogWWyRU6vyLgRvrNr5Zqv9QWFQR2fqz5k6OlNnZxF6OEGNMeYfkILlDAT9Bbq1ZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703099026</pqid></control><display><type>article</type><title>Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN</title><source>IEEE Electronic Library (IEL)</source><creator>Rajakumari, V ; Pradhan, K P</creator><creatorcontrib>Rajakumari, V ; Pradhan, K P</creatorcontrib><description><![CDATA[In this article, partially depleted silicon on insulator (PD-SOI) FinFET based LIF neuron is demonstrated to mimic biological neuronal behaviour with aid of well-calibrated 3D TCAD simulation. The floating body effect of PD-SOI FinFET is used to store the holes generated by the impact ionisation ('II'), which exhibits the integration phenomenon and recombination manifests the leaky function. It shows 5.4 fJ of energy per spike, which is significantly lower than other FinFET based neurons reported till date. Moreover, it needs only 1.8 V of supply voltage, which is lower as compared to its equivalent bulk FinFET and PD-SOI MOSFET based LIF neurons. The proposed PD-SOI FinFET LIF neuron shows megahertz range of spiking frequency, that is <inline-formula><tex-math notation="LaTeX">\sim 10 ^{5}</tex-math></inline-formula>× higher than biological neuron (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1-10 Hz). Furthermore, the effective area of the FinFET is optimized as 0.023 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX"> ^{2}</tex-math></inline-formula>. Thus, the proposed PD-SOI FinFET based LIF neuron is more attractive for large scale hardware implementation of SNN, due to its energy and area efficiency comparable with biological neuron along with CMOS compatibility.]]></description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2022.3195698</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Biology ; Computational modeling ; FinFETs ; Floating bodies ; Hardware ; Impact ionisation ; leaky-integrate and fire ; Logic gates ; MOSFETs ; Neurons ; PD-SOI FinFET ; SOI (semiconductors) ; spiking neural network</subject><ispartof>IEEE transactions on nanotechnology, 2022, Vol.21, p.434-441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1033ccfe9a7f54e3750a4280904f38a6ba938545b4fd40ce18f854dbd293f53f3</citedby><cites>FETCH-LOGICAL-c295t-1033ccfe9a7f54e3750a4280904f38a6ba938545b4fd40ce18f854dbd293f53f3</cites><orcidid>0000-0002-8107-6247 ; 0000-0002-7313-294X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9847408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9847408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajakumari, V</creatorcontrib><creatorcontrib>Pradhan, K P</creatorcontrib><title>Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description><![CDATA[In this article, partially depleted silicon on insulator (PD-SOI) FinFET based LIF neuron is demonstrated to mimic biological neuronal behaviour with aid of well-calibrated 3D TCAD simulation. The floating body effect of PD-SOI FinFET is used to store the holes generated by the impact ionisation ('II'), which exhibits the integration phenomenon and recombination manifests the leaky function. It shows 5.4 fJ of energy per spike, which is significantly lower than other FinFET based neurons reported till date. Moreover, it needs only 1.8 V of supply voltage, which is lower as compared to its equivalent bulk FinFET and PD-SOI MOSFET based LIF neurons. The proposed PD-SOI FinFET LIF neuron shows megahertz range of spiking frequency, that is <inline-formula><tex-math notation="LaTeX">\sim 10 ^{5}</tex-math></inline-formula>× higher than biological neuron (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1-10 Hz). Furthermore, the effective area of the FinFET is optimized as 0.023 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX"> ^{2}</tex-math></inline-formula>. Thus, the proposed PD-SOI FinFET based LIF neuron is more attractive for large scale hardware implementation of SNN, due to its energy and area efficiency comparable with biological neuron along with CMOS compatibility.]]></description><subject>Biological system modeling</subject><subject>Biology</subject><subject>Computational modeling</subject><subject>FinFETs</subject><subject>Floating bodies</subject><subject>Hardware</subject><subject>Impact ionisation</subject><subject>leaky-integrate and fire</subject><subject>Logic gates</subject><subject>MOSFETs</subject><subject>Neurons</subject><subject>PD-SOI FinFET</subject><subject>SOI (semiconductors)</subject><subject>spiking neural network</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhejiYj-Ab1p4vXw9GtrLxFBMcswARLvmrK1ZgRWbEcM_94ixKtz3uR9zkmeJLnHMMAY5NOiHJazAQFCBhRLnklxkfSwZDgFEPwy7pxmKSb88zq5CWENgPOMi17y_mK2rg2d113jWuQs0i1abmIu3A8at8Z_HdDHSzqfTdGkaSfjBXrWwdSomE5QafY-QtZ5NC_L2-TK6k0wd-fZT5axPnpLi9nrdDQs0opI3qUYKK0qa6TOLWeG5hw0IwIkMEuFzlZaUsEZXzFbM6gMFjbGelUTSS2nlvaTx9PdnXffexM6tXZ738aXiuRAQUogWWyRU6vyLgRvrNr5Zqv9QWFQR2fqz5k6OlNnZxF6OEGNMeYfkILlDAT9Bbq1ZVw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Rajakumari, V</creator><creator>Pradhan, K P</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8107-6247</orcidid><orcidid>https://orcid.org/0000-0002-7313-294X</orcidid></search><sort><creationdate>2022</creationdate><title>Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN</title><author>Rajakumari, V ; Pradhan, K P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1033ccfe9a7f54e3750a4280904f38a6ba938545b4fd40ce18f854dbd293f53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Biology</topic><topic>Computational modeling</topic><topic>FinFETs</topic><topic>Floating bodies</topic><topic>Hardware</topic><topic>Impact ionisation</topic><topic>leaky-integrate and fire</topic><topic>Logic gates</topic><topic>MOSFETs</topic><topic>Neurons</topic><topic>PD-SOI FinFET</topic><topic>SOI (semiconductors)</topic><topic>spiking neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajakumari, V</creatorcontrib><creatorcontrib>Pradhan, K P</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajakumari, V</au><au>Pradhan, K P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2022</date><risdate>2022</risdate><volume>21</volume><spage>434</spage><epage>441</epage><pages>434-441</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract><![CDATA[In this article, partially depleted silicon on insulator (PD-SOI) FinFET based LIF neuron is demonstrated to mimic biological neuronal behaviour with aid of well-calibrated 3D TCAD simulation. The floating body effect of PD-SOI FinFET is used to store the holes generated by the impact ionisation ('II'), which exhibits the integration phenomenon and recombination manifests the leaky function. It shows 5.4 fJ of energy per spike, which is significantly lower than other FinFET based neurons reported till date. Moreover, it needs only 1.8 V of supply voltage, which is lower as compared to its equivalent bulk FinFET and PD-SOI MOSFET based LIF neurons. The proposed PD-SOI FinFET LIF neuron shows megahertz range of spiking frequency, that is <inline-formula><tex-math notation="LaTeX">\sim 10 ^{5}</tex-math></inline-formula>× higher than biological neuron (<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>1-10 Hz). Furthermore, the effective area of the FinFET is optimized as 0.023 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX"> ^{2}</tex-math></inline-formula>. Thus, the proposed PD-SOI FinFET based LIF neuron is more attractive for large scale hardware implementation of SNN, due to its energy and area efficiency comparable with biological neuron along with CMOS compatibility.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2022.3195698</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8107-6247</orcidid><orcidid>https://orcid.org/0000-0002-7313-294X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2022, Vol.21, p.434-441 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_9847408 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Biology Computational modeling FinFETs Floating bodies Hardware Impact ionisation leaky-integrate and fire Logic gates MOSFETs Neurons PD-SOI FinFET SOI (semiconductors) spiking neural network |
title | Demonstration of an UltraLow Energy PD-SOI FinFET Based LIF Neuron for SNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20an%20UltraLow%20Energy%20PD-SOI%20FinFET%20Based%20LIF%20Neuron%20for%20SNN&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Rajakumari,%20V&rft.date=2022&rft.volume=21&rft.spage=434&rft.epage=441&rft.pages=434-441&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2022.3195698&rft_dat=%3Cproquest_RIE%3E2703099026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703099026&rft_id=info:pmid/&rft_ieee_id=9847408&rfr_iscdi=true |