Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels

Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.119566-119574
Hauptverfasser: Dileep, P., Singla, Aashvi, Das, Dibyajyoti, Bora, Prabin Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119574
container_issue
container_start_page 119566
container_title IEEE access
container_volume 10
creator Dileep, P.
Singla, Aashvi
Das, Dibyajyoti
Bora, Prabin Kumar
description Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.
doi_str_mv 10.1109/ACCESS.2022.3195229
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9845419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9845419</ieee_id><doaj_id>oai_doaj_org_article_cc13f55bd1fa49ebabd3fa185fd93aca</doaj_id><sourcerecordid>2737569592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIIOgXcInEOcVrEh9L2CpaVWI5W1N7TFOlcbFbJP4eQ1DFXGbRvDfLy7JLSsaUEnU9aZq7l5cxI4yNOVWSMXWUnTFaqoJLXh7_i0-zUYxrkqxOJVmdZc-3iNt8hhD6tn8vbiCizSf7nd_ArjX53Nt9lyLf500HMbauNUO6-MSQz6fzRf6EXyvfYd6soO-xixfZiYMu4ujPn2dv93evzWMxWzxMm8msMILUu0I4KokjqMBwUqKgFUVRWVoySUBJBVIaoZyygoBFaYyFuiRcSuA1d87x82w68FoPa70N7QbCl_bQ6t-CD-8aQjqiQ20M5U7KpaUOhMIlLC13QGvprOJgIHFdDVzb4D_2GHd67fehT-trVvFKpmcplrr40GWCjzGgO0ylRP9ooQct9I8W-k-LhLocUC0iHhCqFlJQxb8BYAiFSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737569592</pqid></control><display><type>article</type><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</creator><creatorcontrib>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</creatorcontrib><description>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3195229</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Automatic modulation classification (AMC) ; Channels ; Classification ; Classification algorithms ; Classifiers ; Communications systems ; Comparative studies ; Convolution ; convolutional neural network (CNN) ; Convolutional neural networks ; correlated MIMO channels ; Correlation ; decision cooperation ; Deep learning ; feature fusion ; keyhole channel ; Keyholes ; Machine learning ; MIMO communication ; Modulation ; multiple input multiple output systems (MIMO) ; Scattering</subject><ispartof>IEEE access, 2022, Vol.10, p.119566-119574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</citedby><cites>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</cites><orcidid>0000-0003-3926-8146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9845419$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Singla, Aashvi</creatorcontrib><creatorcontrib>Das, Dibyajyoti</creatorcontrib><creatorcontrib>Bora, Prabin Kumar</creatorcontrib><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</description><subject>Artificial neural networks</subject><subject>Automatic modulation classification (AMC)</subject><subject>Channels</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Communications systems</subject><subject>Comparative studies</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>correlated MIMO channels</subject><subject>Correlation</subject><subject>decision cooperation</subject><subject>Deep learning</subject><subject>feature fusion</subject><subject>keyhole channel</subject><subject>Keyholes</subject><subject>Machine learning</subject><subject>MIMO communication</subject><subject>Modulation</subject><subject>multiple input multiple output systems (MIMO)</subject><subject>Scattering</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIIOgXcInEOcVrEh9L2CpaVWI5W1N7TFOlcbFbJP4eQ1DFXGbRvDfLy7JLSsaUEnU9aZq7l5cxI4yNOVWSMXWUnTFaqoJLXh7_i0-zUYxrkqxOJVmdZc-3iNt8hhD6tn8vbiCizSf7nd_ArjX53Nt9lyLf500HMbauNUO6-MSQz6fzRf6EXyvfYd6soO-xixfZiYMu4ujPn2dv93evzWMxWzxMm8msMILUu0I4KokjqMBwUqKgFUVRWVoySUBJBVIaoZyygoBFaYyFuiRcSuA1d87x82w68FoPa70N7QbCl_bQ6t-CD-8aQjqiQ20M5U7KpaUOhMIlLC13QGvprOJgIHFdDVzb4D_2GHd67fehT-trVvFKpmcplrr40GWCjzGgO0ylRP9ooQct9I8W-k-LhLocUC0iHhCqFlJQxb8BYAiFSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dileep, P.</creator><creator>Singla, Aashvi</creator><creator>Das, Dibyajyoti</creator><creator>Bora, Prabin Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3926-8146</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><author>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Automatic modulation classification (AMC)</topic><topic>Channels</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Communications systems</topic><topic>Comparative studies</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>correlated MIMO channels</topic><topic>Correlation</topic><topic>decision cooperation</topic><topic>Deep learning</topic><topic>feature fusion</topic><topic>keyhole channel</topic><topic>Keyholes</topic><topic>Machine learning</topic><topic>MIMO communication</topic><topic>Modulation</topic><topic>multiple input multiple output systems (MIMO)</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Singla, Aashvi</creatorcontrib><creatorcontrib>Das, Dibyajyoti</creatorcontrib><creatorcontrib>Bora, Prabin Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dileep, P.</au><au>Singla, Aashvi</au><au>Das, Dibyajyoti</au><au>Bora, Prabin Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>119566</spage><epage>119574</epage><pages>119566-119574</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3195229</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3926-8146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.119566-119574
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9845419
source EZB Free E-Journals; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals
subjects Artificial neural networks
Automatic modulation classification (AMC)
Channels
Classification
Classification algorithms
Classifiers
Communications systems
Comparative studies
Convolution
convolutional neural network (CNN)
Convolutional neural networks
correlated MIMO channels
Correlation
decision cooperation
Deep learning
feature fusion
keyhole channel
Keyholes
Machine learning
MIMO communication
Modulation
multiple input multiple output systems (MIMO)
Scattering
title Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Automatic%20Modulation%20Classification%20Over%20MIMO%20Keyhole%20Channels&rft.jtitle=IEEE%20access&rft.au=Dileep,%20P.&rft.date=2022&rft.volume=10&rft.spage=119566&rft.epage=119574&rft.pages=119566-119574&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3195229&rft_dat=%3Cproquest_ieee_%3E2737569592%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737569592&rft_id=info:pmid/&rft_ieee_id=9845419&rft_doaj_id=oai_doaj_org_article_cc13f55bd1fa49ebabd3fa185fd93aca&rfr_iscdi=true