Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels
Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learnin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.119566-119574 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119574 |
---|---|
container_issue | |
container_start_page | 119566 |
container_title | IEEE access |
container_volume | 10 |
creator | Dileep, P. Singla, Aashvi Das, Dibyajyoti Bora, Prabin Kumar |
description | Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented. |
doi_str_mv | 10.1109/ACCESS.2022.3195229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9845419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9845419</ieee_id><doaj_id>oai_doaj_org_article_cc13f55bd1fa49ebabd3fa185fd93aca</doaj_id><sourcerecordid>2737569592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIIOgXcInEOcVrEh9L2CpaVWI5W1N7TFOlcbFbJP4eQ1DFXGbRvDfLy7JLSsaUEnU9aZq7l5cxI4yNOVWSMXWUnTFaqoJLXh7_i0-zUYxrkqxOJVmdZc-3iNt8hhD6tn8vbiCizSf7nd_ArjX53Nt9lyLf500HMbauNUO6-MSQz6fzRf6EXyvfYd6soO-xixfZiYMu4ujPn2dv93evzWMxWzxMm8msMILUu0I4KokjqMBwUqKgFUVRWVoySUBJBVIaoZyygoBFaYyFuiRcSuA1d87x82w68FoPa70N7QbCl_bQ6t-CD-8aQjqiQ20M5U7KpaUOhMIlLC13QGvprOJgIHFdDVzb4D_2GHd67fehT-trVvFKpmcplrr40GWCjzGgO0ylRP9ooQct9I8W-k-LhLocUC0iHhCqFlJQxb8BYAiFSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737569592</pqid></control><display><type>article</type><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</creator><creatorcontrib>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</creatorcontrib><description>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3195229</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Automatic modulation classification (AMC) ; Channels ; Classification ; Classification algorithms ; Classifiers ; Communications systems ; Comparative studies ; Convolution ; convolutional neural network (CNN) ; Convolutional neural networks ; correlated MIMO channels ; Correlation ; decision cooperation ; Deep learning ; feature fusion ; keyhole channel ; Keyholes ; Machine learning ; MIMO communication ; Modulation ; multiple input multiple output systems (MIMO) ; Scattering</subject><ispartof>IEEE access, 2022, Vol.10, p.119566-119574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</citedby><cites>FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</cites><orcidid>0000-0003-3926-8146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9845419$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Singla, Aashvi</creatorcontrib><creatorcontrib>Das, Dibyajyoti</creatorcontrib><creatorcontrib>Bora, Prabin Kumar</creatorcontrib><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</description><subject>Artificial neural networks</subject><subject>Automatic modulation classification (AMC)</subject><subject>Channels</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Communications systems</subject><subject>Comparative studies</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>correlated MIMO channels</subject><subject>Correlation</subject><subject>decision cooperation</subject><subject>Deep learning</subject><subject>feature fusion</subject><subject>keyhole channel</subject><subject>Keyholes</subject><subject>Machine learning</subject><subject>MIMO communication</subject><subject>Modulation</subject><subject>multiple input multiple output systems (MIMO)</subject><subject>Scattering</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIIOgXcInEOcVrEh9L2CpaVWI5W1N7TFOlcbFbJP4eQ1DFXGbRvDfLy7JLSsaUEnU9aZq7l5cxI4yNOVWSMXWUnTFaqoJLXh7_i0-zUYxrkqxOJVmdZc-3iNt8hhD6tn8vbiCizSf7nd_ArjX53Nt9lyLf500HMbauNUO6-MSQz6fzRf6EXyvfYd6soO-xixfZiYMu4ujPn2dv93evzWMxWzxMm8msMILUu0I4KokjqMBwUqKgFUVRWVoySUBJBVIaoZyygoBFaYyFuiRcSuA1d87x82w68FoPa70N7QbCl_bQ6t-CD-8aQjqiQ20M5U7KpaUOhMIlLC13QGvprOJgIHFdDVzb4D_2GHd67fehT-trVvFKpmcplrr40GWCjzGgO0ylRP9ooQct9I8W-k-LhLocUC0iHhCqFlJQxb8BYAiFSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dileep, P.</creator><creator>Singla, Aashvi</creator><creator>Das, Dibyajyoti</creator><creator>Bora, Prabin Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3926-8146</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</title><author>Dileep, P. ; Singla, Aashvi ; Das, Dibyajyoti ; Bora, Prabin Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4f150f0e9ac306e4171e47d16250a959a55c49f9d40ade5ccda860355a383fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Automatic modulation classification (AMC)</topic><topic>Channels</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Communications systems</topic><topic>Comparative studies</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>correlated MIMO channels</topic><topic>Correlation</topic><topic>decision cooperation</topic><topic>Deep learning</topic><topic>feature fusion</topic><topic>keyhole channel</topic><topic>Keyholes</topic><topic>Machine learning</topic><topic>MIMO communication</topic><topic>Modulation</topic><topic>multiple input multiple output systems (MIMO)</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dileep, P.</creatorcontrib><creatorcontrib>Singla, Aashvi</creatorcontrib><creatorcontrib>Das, Dibyajyoti</creatorcontrib><creatorcontrib>Bora, Prabin Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dileep, P.</au><au>Singla, Aashvi</au><au>Das, Dibyajyoti</au><au>Bora, Prabin Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>119566</spage><epage>119574</epage><pages>119566-119574</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic modulation classification (AMC) is a significant part of cognitive communication systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for the AMC problem. With the developments in the data-driven approaches, a third method based on deep learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional neural network based classifiers are very efficient in the AMC for both single input single output (SISO) and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the channel considered is full rank. This work addresses the problem of AMC over rank deficient channels such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the existing FB AMC method for the MIMO keyhole channel is also presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3195229</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3926-8146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.119566-119574 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9845419 |
source | EZB Free E-Journals; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Automatic modulation classification (AMC) Channels Classification Classification algorithms Classifiers Communications systems Comparative studies Convolution convolutional neural network (CNN) Convolutional neural networks correlated MIMO channels Correlation decision cooperation Deep learning feature fusion keyhole channel Keyholes Machine learning MIMO communication Modulation multiple input multiple output systems (MIMO) Scattering |
title | Deep Learning-Based Automatic Modulation Classification Over MIMO Keyhole Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Automatic%20Modulation%20Classification%20Over%20MIMO%20Keyhole%20Channels&rft.jtitle=IEEE%20access&rft.au=Dileep,%20P.&rft.date=2022&rft.volume=10&rft.spage=119566&rft.epage=119574&rft.pages=119566-119574&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3195229&rft_dat=%3Cproquest_ieee_%3E2737569592%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737569592&rft_id=info:pmid/&rft_ieee_id=9845419&rft_doaj_id=oai_doaj_org_article_cc13f55bd1fa49ebabd3fa185fd93aca&rfr_iscdi=true |