Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology
Reconfigurable radiofrequency (RF) signal generation in the 30-300 GHz range is attractive for many applications. W-band (75-110 GHz) is currently targeted by both wireless and satellite communications and similar frequency ranges are employed for on-board automotive radar systems. Distribution of h...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-10, Vol.40 (20), p.6891-6900 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6900 |
---|---|
container_issue | 20 |
container_start_page | 6891 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Malacarne, Antonio Bigongiari, Alessandra D'Errico, Antonio Bogoni, Antonella Porzi, Claudio |
description | Reconfigurable radiofrequency (RF) signal generation in the 30-300 GHz range is attractive for many applications. W-band (75-110 GHz) is currently targeted by both wireless and satellite communications and similar frequency ranges are employed for on-board automotive radar systems. Distribution of high-precision and high-frequency synchronization signals in modern centralized radio access networks might be addressed by radio-over-fiber solutions, but the stringent phase noise (PN) requirements in case of broadband signals with high subcarriers density are not easily attainable through conventional electric-domain solutions. This article reports on the performance of a monolithically integrated silicon photonics (SiP) circuit employed for RF carrier synthesis. Up to sixfold frequency multiplication of an 18.5 GHz reference clock is demonstrated with low additional phase noise. The circuit includes a high-speed electro-optic phase modulator employed for optical frequency comb (OFC) generation and a tunable distributed feedback resonator (DFBR) filter for selecting the desired OFC harmonic. The beating of the OFC tone with the input laser mode in an off-chip photodiode generates the target RF carrier wave. By tuning the reference clock and the DFBR filter, reconfigurable frequency generation up to W-band and beyond is achieved. PN and time jitter (TJ) of the generated RF carriers are experimentally measured, demonstrating a similar performance as of an ideal frequency multiplier. The effect of the noise of DC sources employed for filter tuning is assessed and a counteracting solution is implemented. TJ robustness versus laser drifting is analyzed and the potential for up to elevenfold frequency multiplication (203.5 GHz) is shown. |
doi_str_mv | 10.1109/JLT.2022.3194361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9845384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9845384</ieee_id><sourcerecordid>2727045649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b8f41f5a92f60a0bb2592dddcef1658bc5162052ca7c1fb1fc91d78ce4f24acc3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tulRh5tKUZkTjyFNky2jJjNpkf33dmx4-d7L-7wfPABcYzTBGJV3L9VyQhAhE4pLRnN8AkaYc5ERgukpGKGC0kwUhJ2Di5Q2CGHGRDECamF08Nat-qjq1sAq_ML3tUoGvgY33MUMTlWMzkQ4N95E1bngYb-FXYBf2YPyDXQefrjWDTMDGbrgnU5wafTahzasdpfgzKo2matjjsHn7HE5fcqqt_nz9L7KNMlFl9XCMmy5KonNkUJ1TXhJmqbRxuKci1pznBPEiVaFxrbGVpe4KYQ2zBKmtKZjcHvY3cbw05vUyU3oox9eSlKQAjGes3JooUNLx5BSNFZuo_tWcScxknuRchAp9yLlUeSA3BwQZ4z5r5eCcSoY_QNDHW85</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045649</pqid></control><display><type>article</type><title>Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Malacarne, Antonio ; Bigongiari, Alessandra ; D'Errico, Antonio ; Bogoni, Antonella ; Porzi, Claudio</creator><creatorcontrib>Malacarne, Antonio ; Bigongiari, Alessandra ; D'Errico, Antonio ; Bogoni, Antonella ; Porzi, Claudio</creatorcontrib><description>Reconfigurable radiofrequency (RF) signal generation in the 30-300 GHz range is attractive for many applications. W-band (75-110 GHz) is currently targeted by both wireless and satellite communications and similar frequency ranges are employed for on-board automotive radar systems. Distribution of high-precision and high-frequency synchronization signals in modern centralized radio access networks might be addressed by radio-over-fiber solutions, but the stringent phase noise (PN) requirements in case of broadband signals with high subcarriers density are not easily attainable through conventional electric-domain solutions. This article reports on the performance of a monolithically integrated silicon photonics (SiP) circuit employed for RF carrier synthesis. Up to sixfold frequency multiplication of an 18.5 GHz reference clock is demonstrated with low additional phase noise. The circuit includes a high-speed electro-optic phase modulator employed for optical frequency comb (OFC) generation and a tunable distributed feedback resonator (DFBR) filter for selecting the desired OFC harmonic. The beating of the OFC tone with the input laser mode in an off-chip photodiode generates the target RF carrier wave. By tuning the reference clock and the DFBR filter, reconfigurable frequency generation up to W-band and beyond is achieved. PN and time jitter (TJ) of the generated RF carriers are experimentally measured, demonstrating a similar performance as of an ideal frequency multiplier. The effect of the noise of DC sources employed for filter tuning is assessed and a counteracting solution is implemented. TJ robustness versus laser drifting is analyzed and the potential for up to elevenfold frequency multiplication (203.5 GHz) is shown.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3194361</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automotive radar ; Broadband ; Carrier waves ; Circuits ; Clocks ; Frequency multipliers ; Frequency ranges ; Frequency synchronization ; High-speed optical techniques ; Integrated optics ; Laser modes ; Microwave filters ; Microwave photonics ; millimeter-wave generation ; networks synchronization ; Onboard equipment ; Optical frequency ; Phase noise ; Photodiodes ; Photonics ; Power harmonic filters ; Radar equipment ; Radio frequency ; Reconfiguration ; Robustness (mathematics) ; Satellite communications ; Signal generation ; Silicon ; silicon photonics ; Tuning ; waveguide Bragg gratings ; Wireless communication ; Wireless communications</subject><ispartof>Journal of lightwave technology, 2022-10, Vol.40 (20), p.6891-6900</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-b8f41f5a92f60a0bb2592dddcef1658bc5162052ca7c1fb1fc91d78ce4f24acc3</citedby><cites>FETCH-LOGICAL-c268t-b8f41f5a92f60a0bb2592dddcef1658bc5162052ca7c1fb1fc91d78ce4f24acc3</cites><orcidid>0000-0003-3165-8465 ; 0000-0002-8240-2171 ; 0000-0003-2401-5429 ; 0000-0002-6877-3558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9845384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9845384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Malacarne, Antonio</creatorcontrib><creatorcontrib>Bigongiari, Alessandra</creatorcontrib><creatorcontrib>D'Errico, Antonio</creatorcontrib><creatorcontrib>Bogoni, Antonella</creatorcontrib><creatorcontrib>Porzi, Claudio</creatorcontrib><title>Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Reconfigurable radiofrequency (RF) signal generation in the 30-300 GHz range is attractive for many applications. W-band (75-110 GHz) is currently targeted by both wireless and satellite communications and similar frequency ranges are employed for on-board automotive radar systems. Distribution of high-precision and high-frequency synchronization signals in modern centralized radio access networks might be addressed by radio-over-fiber solutions, but the stringent phase noise (PN) requirements in case of broadband signals with high subcarriers density are not easily attainable through conventional electric-domain solutions. This article reports on the performance of a monolithically integrated silicon photonics (SiP) circuit employed for RF carrier synthesis. Up to sixfold frequency multiplication of an 18.5 GHz reference clock is demonstrated with low additional phase noise. The circuit includes a high-speed electro-optic phase modulator employed for optical frequency comb (OFC) generation and a tunable distributed feedback resonator (DFBR) filter for selecting the desired OFC harmonic. The beating of the OFC tone with the input laser mode in an off-chip photodiode generates the target RF carrier wave. By tuning the reference clock and the DFBR filter, reconfigurable frequency generation up to W-band and beyond is achieved. PN and time jitter (TJ) of the generated RF carriers are experimentally measured, demonstrating a similar performance as of an ideal frequency multiplier. The effect of the noise of DC sources employed for filter tuning is assessed and a counteracting solution is implemented. TJ robustness versus laser drifting is analyzed and the potential for up to elevenfold frequency multiplication (203.5 GHz) is shown.</description><subject>Automotive radar</subject><subject>Broadband</subject><subject>Carrier waves</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Frequency multipliers</subject><subject>Frequency ranges</subject><subject>Frequency synchronization</subject><subject>High-speed optical techniques</subject><subject>Integrated optics</subject><subject>Laser modes</subject><subject>Microwave filters</subject><subject>Microwave photonics</subject><subject>millimeter-wave generation</subject><subject>networks synchronization</subject><subject>Onboard equipment</subject><subject>Optical frequency</subject><subject>Phase noise</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Power harmonic filters</subject><subject>Radar equipment</subject><subject>Radio frequency</subject><subject>Reconfiguration</subject><subject>Robustness (mathematics)</subject><subject>Satellite communications</subject><subject>Signal generation</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Tuning</subject><subject>waveguide Bragg gratings</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-tulRh5tKUZkTjyFNky2jJjNpkf33dmx4-d7L-7wfPABcYzTBGJV3L9VyQhAhE4pLRnN8AkaYc5ERgukpGKGC0kwUhJ2Di5Q2CGHGRDECamF08Nat-qjq1sAq_ML3tUoGvgY33MUMTlWMzkQ4N95E1bngYb-FXYBf2YPyDXQefrjWDTMDGbrgnU5wafTahzasdpfgzKo2matjjsHn7HE5fcqqt_nz9L7KNMlFl9XCMmy5KonNkUJ1TXhJmqbRxuKci1pznBPEiVaFxrbGVpe4KYQ2zBKmtKZjcHvY3cbw05vUyU3oox9eSlKQAjGes3JooUNLx5BSNFZuo_tWcScxknuRchAp9yLlUeSA3BwQZ4z5r5eCcSoY_QNDHW85</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Malacarne, Antonio</creator><creator>Bigongiari, Alessandra</creator><creator>D'Errico, Antonio</creator><creator>Bogoni, Antonella</creator><creator>Porzi, Claudio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3165-8465</orcidid><orcidid>https://orcid.org/0000-0002-8240-2171</orcidid><orcidid>https://orcid.org/0000-0003-2401-5429</orcidid><orcidid>https://orcid.org/0000-0002-6877-3558</orcidid></search><sort><creationdate>20221015</creationdate><title>Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology</title><author>Malacarne, Antonio ; Bigongiari, Alessandra ; D'Errico, Antonio ; Bogoni, Antonella ; Porzi, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b8f41f5a92f60a0bb2592dddcef1658bc5162052ca7c1fb1fc91d78ce4f24acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive radar</topic><topic>Broadband</topic><topic>Carrier waves</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Frequency multipliers</topic><topic>Frequency ranges</topic><topic>Frequency synchronization</topic><topic>High-speed optical techniques</topic><topic>Integrated optics</topic><topic>Laser modes</topic><topic>Microwave filters</topic><topic>Microwave photonics</topic><topic>millimeter-wave generation</topic><topic>networks synchronization</topic><topic>Onboard equipment</topic><topic>Optical frequency</topic><topic>Phase noise</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Power harmonic filters</topic><topic>Radar equipment</topic><topic>Radio frequency</topic><topic>Reconfiguration</topic><topic>Robustness (mathematics)</topic><topic>Satellite communications</topic><topic>Signal generation</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Tuning</topic><topic>waveguide Bragg gratings</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malacarne, Antonio</creatorcontrib><creatorcontrib>Bigongiari, Alessandra</creatorcontrib><creatorcontrib>D'Errico, Antonio</creatorcontrib><creatorcontrib>Bogoni, Antonella</creatorcontrib><creatorcontrib>Porzi, Claudio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malacarne, Antonio</au><au>Bigongiari, Alessandra</au><au>D'Errico, Antonio</au><au>Bogoni, Antonella</au><au>Porzi, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-10-15</date><risdate>2022</risdate><volume>40</volume><issue>20</issue><spage>6891</spage><epage>6900</epage><pages>6891-6900</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Reconfigurable radiofrequency (RF) signal generation in the 30-300 GHz range is attractive for many applications. W-band (75-110 GHz) is currently targeted by both wireless and satellite communications and similar frequency ranges are employed for on-board automotive radar systems. Distribution of high-precision and high-frequency synchronization signals in modern centralized radio access networks might be addressed by radio-over-fiber solutions, but the stringent phase noise (PN) requirements in case of broadband signals with high subcarriers density are not easily attainable through conventional electric-domain solutions. This article reports on the performance of a monolithically integrated silicon photonics (SiP) circuit employed for RF carrier synthesis. Up to sixfold frequency multiplication of an 18.5 GHz reference clock is demonstrated with low additional phase noise. The circuit includes a high-speed electro-optic phase modulator employed for optical frequency comb (OFC) generation and a tunable distributed feedback resonator (DFBR) filter for selecting the desired OFC harmonic. The beating of the OFC tone with the input laser mode in an off-chip photodiode generates the target RF carrier wave. By tuning the reference clock and the DFBR filter, reconfigurable frequency generation up to W-band and beyond is achieved. PN and time jitter (TJ) of the generated RF carriers are experimentally measured, demonstrating a similar performance as of an ideal frequency multiplier. The effect of the noise of DC sources employed for filter tuning is assessed and a counteracting solution is implemented. TJ robustness versus laser drifting is analyzed and the potential for up to elevenfold frequency multiplication (203.5 GHz) is shown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3194361</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3165-8465</orcidid><orcidid>https://orcid.org/0000-0002-8240-2171</orcidid><orcidid>https://orcid.org/0000-0003-2401-5429</orcidid><orcidid>https://orcid.org/0000-0002-6877-3558</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-10, Vol.40 (20), p.6891-6900 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9845384 |
source | IEEE Electronic Library (IEL) |
subjects | Automotive radar Broadband Carrier waves Circuits Clocks Frequency multipliers Frequency ranges Frequency synchronization High-speed optical techniques Integrated optics Laser modes Microwave filters Microwave photonics millimeter-wave generation networks synchronization Onboard equipment Optical frequency Phase noise Photodiodes Photonics Power harmonic filters Radar equipment Radio frequency Reconfiguration Robustness (mathematics) Satellite communications Signal generation Silicon silicon photonics Tuning waveguide Bragg gratings Wireless communication Wireless communications |
title | Reconfigurable Low Phase Noise RF Carrier Generation up to W-Band in Silicon Photonics Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20Low%20Phase%20Noise%20RF%20Carrier%20Generation%20up%20to%20W-Band%20in%20Silicon%20Photonics%20Technology&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Malacarne,%20Antonio&rft.date=2022-10-15&rft.volume=40&rft.issue=20&rft.spage=6891&rft.epage=6900&rft.pages=6891-6900&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3194361&rft_dat=%3Cproquest_RIE%3E2727045649%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045649&rft_id=info:pmid/&rft_ieee_id=9845384&rfr_iscdi=true |