Data-Driven Iterative Learning Predictive Control for Power Converters

This letter proposes a data-driven iterative learning predictive control architecture for power converters. The main objectives of this letter are to enhance the robustness and remain the high performance of finite control-set model predictive control (FCS-MPC) under unmodeled dynamics and parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-12, Vol.37 (12), p.14028-14033
Hauptverfasser: Wu, Wenjie, Qiu, Lin, Liu, Xing, Guo, Feng, Rodriguez, Jose, Ma, Jien, Fang, Youtong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14033
container_issue 12
container_start_page 14028
container_title IEEE transactions on power electronics
container_volume 37
creator Wu, Wenjie
Qiu, Lin
Liu, Xing
Guo, Feng
Rodriguez, Jose
Ma, Jien
Fang, Youtong
description This letter proposes a data-driven iterative learning predictive control architecture for power converters. The main objectives of this letter are to enhance the robustness and remain the high performance of finite control-set model predictive control (FCS-MPC) under unmodeled dynamics and parameter mismatch conditions. More specifically, an iterative dynamic linearization technique is utilized to equivalently reformulate the nonlinear power converter system at each operating point. Based on this, a model-free adaptive control scheme is presented to iteratively determine the optimal control actions. Due to the incorporation of iterative learning control and data-driven concept into the FCS-MPC framework, the effect of parameter perturbations can be alleviated in the proposed method, while creating a positive effect on the tracking error. Finally, a convergence analysis is provided and experimental investigations on a three-level neutral-point-clamped (NPC) converter confirm the effectiveness of the proposed method.
doi_str_mv 10.1109/TPEL.2022.3194518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9844292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9844292</ieee_id><sourcerecordid>2709158091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-10720993bc846fb81f619e0df569e57f3c4c5346aa338618e1d845c31cf601503</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6ROKfs-pHaR9QHVIpED-Vsue4apSpJcdIi_h6HVlx2R6OZ3dEwdo8wQgTztFrOyhEHzkcCjVSoL9ggAcwBYXzJBqC1yrUx4prdtO0WAKUCHLD51HUun8bqSHW26Ci6LsGsJBfrqv7IlpE2lf_jJk3dxWaXhSZmy-abYs8cKSZTe8uugtu1dHfeQ_Y-n60mr3n59rKYPJe551x0ecrCIYVYey2LsNYYCjQEm6AKQ2ochJdeCVk4J4QuUBNutFReoA8FoAIxZI-nu_vYfB2o7ey2OcQ6vbR8DAaVTiOp8KTysWnbSMHuY_Xp4o9FsH1dtq_L9nXZc13J83DyVET0rzdaSm64-AXCxWTf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709158091</pqid></control><display><type>article</type><title>Data-Driven Iterative Learning Predictive Control for Power Converters</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Wenjie ; Qiu, Lin ; Liu, Xing ; Guo, Feng ; Rodriguez, Jose ; Ma, Jien ; Fang, Youtong</creator><creatorcontrib>Wu, Wenjie ; Qiu, Lin ; Liu, Xing ; Guo, Feng ; Rodriguez, Jose ; Ma, Jien ; Fang, Youtong</creatorcontrib><description>This letter proposes a data-driven iterative learning predictive control architecture for power converters. The main objectives of this letter are to enhance the robustness and remain the high performance of finite control-set model predictive control (FCS-MPC) under unmodeled dynamics and parameter mismatch conditions. More specifically, an iterative dynamic linearization technique is utilized to equivalently reformulate the nonlinear power converter system at each operating point. Based on this, a model-free adaptive control scheme is presented to iteratively determine the optimal control actions. Due to the incorporation of iterative learning control and data-driven concept into the FCS-MPC framework, the effect of parameter perturbations can be alleviated in the proposed method, while creating a positive effect on the tracking error. Finally, a convergence analysis is provided and experimental investigations on a three-level neutral-point-clamped (NPC) converter confirm the effectiveness of the proposed method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3194518</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Data models ; Data-driven control ; Error analysis ; finite control-set model predictive control (FCS-MPC) ; iterative learning control ; Iterative methods ; Learning ; Mathematical models ; Optimal control ; Parameters ; Perturbation ; Power converters ; Predictive control ; Predictive models ; Robustness ; Switches ; Tracking errors ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14028-14033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-10720993bc846fb81f619e0df569e57f3c4c5346aa338618e1d845c31cf601503</citedby><cites>FETCH-LOGICAL-c223t-10720993bc846fb81f619e0df569e57f3c4c5346aa338618e1d845c31cf601503</cites><orcidid>0000-0001-9685-2862 ; 0000-0001-6970-3634 ; 0000-0002-8521-4184 ; 0000-0001-9173-7099 ; 0000-0003-1236-2191 ; 0000-0002-1410-4121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9844292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9844292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Ma, Jien</creatorcontrib><creatorcontrib>Fang, Youtong</creatorcontrib><title>Data-Driven Iterative Learning Predictive Control for Power Converters</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This letter proposes a data-driven iterative learning predictive control architecture for power converters. The main objectives of this letter are to enhance the robustness and remain the high performance of finite control-set model predictive control (FCS-MPC) under unmodeled dynamics and parameter mismatch conditions. More specifically, an iterative dynamic linearization technique is utilized to equivalently reformulate the nonlinear power converter system at each operating point. Based on this, a model-free adaptive control scheme is presented to iteratively determine the optimal control actions. Due to the incorporation of iterative learning control and data-driven concept into the FCS-MPC framework, the effect of parameter perturbations can be alleviated in the proposed method, while creating a positive effect on the tracking error. Finally, a convergence analysis is provided and experimental investigations on a three-level neutral-point-clamped (NPC) converter confirm the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Data models</subject><subject>Data-driven control</subject><subject>Error analysis</subject><subject>finite control-set model predictive control (FCS-MPC)</subject><subject>iterative learning control</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Power converters</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Switches</subject><subject>Tracking errors</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIHIC6ROKfs-pHaR9QHVIpED-Vsue4apSpJcdIi_h6HVlx2R6OZ3dEwdo8wQgTztFrOyhEHzkcCjVSoL9ggAcwBYXzJBqC1yrUx4prdtO0WAKUCHLD51HUun8bqSHW26Ci6LsGsJBfrqv7IlpE2lf_jJk3dxWaXhSZmy-abYs8cKSZTe8uugtu1dHfeQ_Y-n60mr3n59rKYPJe551x0ecrCIYVYey2LsNYYCjQEm6AKQ2ochJdeCVk4J4QuUBNutFReoA8FoAIxZI-nu_vYfB2o7ey2OcQ6vbR8DAaVTiOp8KTysWnbSMHuY_Xp4o9FsH1dtq_L9nXZc13J83DyVET0rzdaSm64-AXCxWTf</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wu, Wenjie</creator><creator>Qiu, Lin</creator><creator>Liu, Xing</creator><creator>Guo, Feng</creator><creator>Rodriguez, Jose</creator><creator>Ma, Jien</creator><creator>Fang, Youtong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9685-2862</orcidid><orcidid>https://orcid.org/0000-0001-6970-3634</orcidid><orcidid>https://orcid.org/0000-0002-8521-4184</orcidid><orcidid>https://orcid.org/0000-0001-9173-7099</orcidid><orcidid>https://orcid.org/0000-0003-1236-2191</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid></search><sort><creationdate>20221201</creationdate><title>Data-Driven Iterative Learning Predictive Control for Power Converters</title><author>Wu, Wenjie ; Qiu, Lin ; Liu, Xing ; Guo, Feng ; Rodriguez, Jose ; Ma, Jien ; Fang, Youtong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-10720993bc846fb81f619e0df569e57f3c4c5346aa338618e1d845c31cf601503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Data models</topic><topic>Data-driven control</topic><topic>Error analysis</topic><topic>finite control-set model predictive control (FCS-MPC)</topic><topic>iterative learning control</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Power converters</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Switches</topic><topic>Tracking errors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Rodriguez, Jose</creatorcontrib><creatorcontrib>Ma, Jien</creatorcontrib><creatorcontrib>Fang, Youtong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Wenjie</au><au>Qiu, Lin</au><au>Liu, Xing</au><au>Guo, Feng</au><au>Rodriguez, Jose</au><au>Ma, Jien</au><au>Fang, Youtong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Iterative Learning Predictive Control for Power Converters</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>37</volume><issue>12</issue><spage>14028</spage><epage>14033</epage><pages>14028-14033</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This letter proposes a data-driven iterative learning predictive control architecture for power converters. The main objectives of this letter are to enhance the robustness and remain the high performance of finite control-set model predictive control (FCS-MPC) under unmodeled dynamics and parameter mismatch conditions. More specifically, an iterative dynamic linearization technique is utilized to equivalently reformulate the nonlinear power converter system at each operating point. Based on this, a model-free adaptive control scheme is presented to iteratively determine the optimal control actions. Due to the incorporation of iterative learning control and data-driven concept into the FCS-MPC framework, the effect of parameter perturbations can be alleviated in the proposed method, while creating a positive effect on the tracking error. Finally, a convergence analysis is provided and experimental investigations on a three-level neutral-point-clamped (NPC) converter confirm the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3194518</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9685-2862</orcidid><orcidid>https://orcid.org/0000-0001-6970-3634</orcidid><orcidid>https://orcid.org/0000-0002-8521-4184</orcidid><orcidid>https://orcid.org/0000-0001-9173-7099</orcidid><orcidid>https://orcid.org/0000-0003-1236-2191</orcidid><orcidid>https://orcid.org/0000-0002-1410-4121</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-12, Vol.37 (12), p.14028-14033
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9844292
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Data models
Data-driven control
Error analysis
finite control-set model predictive control (FCS-MPC)
iterative learning control
Iterative methods
Learning
Mathematical models
Optimal control
Parameters
Perturbation
Power converters
Predictive control
Predictive models
Robustness
Switches
Tracking errors
Voltage control
title Data-Driven Iterative Learning Predictive Control for Power Converters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Iterative%20Learning%20Predictive%20Control%20for%20Power%20Converters&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wu,%20Wenjie&rft.date=2022-12-01&rft.volume=37&rft.issue=12&rft.spage=14028&rft.epage=14033&rft.pages=14028-14033&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3194518&rft_dat=%3Cproquest_RIE%3E2709158091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709158091&rft_id=info:pmid/&rft_ieee_id=9844292&rfr_iscdi=true