Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving
In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2023-04, Vol.59 (2), p.989-1006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | 2 |
container_start_page | 989 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Xiang, Haoran Shen, Furao Zhao, Jian |
description | In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing, pulse jitter, and the increasing number of electronic countermeasure devices. In this article, we propose a recursive deinterleaving algorithm based on blind signal separation and deep learning to cope with such a situation. The recursive deinterleaving network (RDN) of deep ToA mask (DTM) maps the ToA train to a suitable feature space first. ToA coefficient masks of each radar emitter are estimated with the local and global context information of the radar pulse feature. Then, the RDN sorts out several radar pulse trains recursively with the help of dual-path attention. It also predicts the number of emitters with nearly 100% accuracy and handles the unknown pulse repetition interval (PRI) situation. More accurate pulse deinterleaving results can be obtained if the DTM utilizes more radar parameters through proper preprocessing fine-tuning and postprocessing reclustering. The processing steps of the DTM are introduced in detail. The simulation shows that it can achieve 97% sorting accuracy for multipulse interleaved radar train with jitter PRI and pulse missing. The DTM algorithm can also deal with the interleaved radar signals of different PRI modulations by reclustering with noisy PDW information. On the premise of knowing the modulation type or PRI information, the pulse train deinterleaving accuracy of multimodulation emitters is higher. |
doi_str_mv | 10.1109/TAES.2022.3193948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9844007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9844007</ieee_id><sourcerecordid>2799860767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-94fda5c37e7dff1e2e566039ba27f512f2579da578e3e7cd9a061b8715e7e8d73</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj2xm51jb-gEVpdbzsk1mJbU2dTcp-O9NaPE0zPC8M8PD2LXgIyE43i3Hs_eR5FKOlECFmTlhA6E1pJhzdcoGnAuTotTinF3EuO7azGRqwMyUaJcs63Hy4uJXeu8ilcmCijbEak_JwpUuJG_tJlIypWrbUNiQ21fbz0t25l03vjrWIft4mC0nT-n89fF5Mp6nhUTVpJj50ulCAUHpvSBJOu8-wpWT4LWQXmrAjgBDiqAo0fFcrAwITUCmBDVkt4e9u1D_tBQbu67bsO1OWgmIJueQ95Q4UEWoYwzk7S5U3y78WsFtL8j2gmwvyB4FdZmbQ6Yion8eTZZxDuoPIoNgFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799860767</pqid></control><display><type>article</type><title>Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Haoran ; Shen, Furao ; Zhao, Jian</creator><creatorcontrib>Xiang, Haoran ; Shen, Furao ; Zhao, Jian</creatorcontrib><description>In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing, pulse jitter, and the increasing number of electronic countermeasure devices. In this article, we propose a recursive deinterleaving algorithm based on blind signal separation and deep learning to cope with such a situation. The recursive deinterleaving network (RDN) of deep ToA mask (DTM) maps the ToA train to a suitable feature space first. ToA coefficient masks of each radar emitter are estimated with the local and global context information of the radar pulse feature. Then, the RDN sorts out several radar pulse trains recursively with the help of dual-path attention. It also predicts the number of emitters with nearly 100% accuracy and handles the unknown pulse repetition interval (PRI) situation. More accurate pulse deinterleaving results can be obtained if the DTM utilizes more radar parameters through proper preprocessing fine-tuning and postprocessing reclustering. The processing steps of the DTM are introduced in detail. The simulation shows that it can achieve 97% sorting accuracy for multipulse interleaved radar train with jitter PRI and pulse missing. The DTM algorithm can also deal with the interleaved radar signals of different PRI modulations by reclustering with noisy PDW information. On the premise of knowing the modulation type or PRI information, the pulse train deinterleaving accuracy of multimodulation emitters is higher.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2022.3193948</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Blind radar pulse sorting ; deep ToA mask (DTM) ; Electronic countermeasures ; Electronic devices ; Emitters ; Jitter ; Modulation ; Parameters ; Prediction algorithms ; Pulse repetition interval ; Radar ; Radar countermeasures ; recursive deinterleaving network (RDN) ; Sorting ; Spaceborne radar ; Vibration</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-04, Vol.59 (2), p.989-1006</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-94fda5c37e7dff1e2e566039ba27f512f2579da578e3e7cd9a061b8715e7e8d73</citedby><cites>FETCH-LOGICAL-c293t-94fda5c37e7dff1e2e566039ba27f512f2579da578e3e7cd9a061b8715e7e8d73</cites><orcidid>0000-0002-7285-326X ; 0000-0003-3949-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9844007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9844007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Haoran</creatorcontrib><creatorcontrib>Shen, Furao</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><title>Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing, pulse jitter, and the increasing number of electronic countermeasure devices. In this article, we propose a recursive deinterleaving algorithm based on blind signal separation and deep learning to cope with such a situation. The recursive deinterleaving network (RDN) of deep ToA mask (DTM) maps the ToA train to a suitable feature space first. ToA coefficient masks of each radar emitter are estimated with the local and global context information of the radar pulse feature. Then, the RDN sorts out several radar pulse trains recursively with the help of dual-path attention. It also predicts the number of emitters with nearly 100% accuracy and handles the unknown pulse repetition interval (PRI) situation. More accurate pulse deinterleaving results can be obtained if the DTM utilizes more radar parameters through proper preprocessing fine-tuning and postprocessing reclustering. The processing steps of the DTM are introduced in detail. The simulation shows that it can achieve 97% sorting accuracy for multipulse interleaved radar train with jitter PRI and pulse missing. The DTM algorithm can also deal with the interleaved radar signals of different PRI modulations by reclustering with noisy PDW information. On the premise of knowing the modulation type or PRI information, the pulse train deinterleaving accuracy of multimodulation emitters is higher.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blind radar pulse sorting</subject><subject>deep ToA mask (DTM)</subject><subject>Electronic countermeasures</subject><subject>Electronic devices</subject><subject>Emitters</subject><subject>Jitter</subject><subject>Modulation</subject><subject>Parameters</subject><subject>Prediction algorithms</subject><subject>Pulse repetition interval</subject><subject>Radar</subject><subject>Radar countermeasures</subject><subject>recursive deinterleaving network (RDN)</subject><subject>Sorting</subject><subject>Spaceborne radar</subject><subject>Vibration</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj2xm51jb-gEVpdbzsk1mJbU2dTcp-O9NaPE0zPC8M8PD2LXgIyE43i3Hs_eR5FKOlECFmTlhA6E1pJhzdcoGnAuTotTinF3EuO7azGRqwMyUaJcs63Hy4uJXeu8ilcmCijbEak_JwpUuJG_tJlIypWrbUNiQ21fbz0t25l03vjrWIft4mC0nT-n89fF5Mp6nhUTVpJj50ulCAUHpvSBJOu8-wpWT4LWQXmrAjgBDiqAo0fFcrAwITUCmBDVkt4e9u1D_tBQbu67bsO1OWgmIJueQ95Q4UEWoYwzk7S5U3y78WsFtL8j2gmwvyB4FdZmbQ6Yion8eTZZxDuoPIoNgFQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Xiang, Haoran</creator><creator>Shen, Furao</creator><creator>Zhao, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7285-326X</orcidid><orcidid>https://orcid.org/0000-0003-3949-352X</orcidid></search><sort><creationdate>20230401</creationdate><title>Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving</title><author>Xiang, Haoran ; Shen, Furao ; Zhao, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-94fda5c37e7dff1e2e566039ba27f512f2579da578e3e7cd9a061b8715e7e8d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blind radar pulse sorting</topic><topic>deep ToA mask (DTM)</topic><topic>Electronic countermeasures</topic><topic>Electronic devices</topic><topic>Emitters</topic><topic>Jitter</topic><topic>Modulation</topic><topic>Parameters</topic><topic>Prediction algorithms</topic><topic>Pulse repetition interval</topic><topic>Radar</topic><topic>Radar countermeasures</topic><topic>recursive deinterleaving network (RDN)</topic><topic>Sorting</topic><topic>Spaceborne radar</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Haoran</creatorcontrib><creatorcontrib>Shen, Furao</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Haoran</au><au>Shen, Furao</au><au>Zhao, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>989</spage><epage>1006</epage><pages>989-1006</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing, pulse jitter, and the increasing number of electronic countermeasure devices. In this article, we propose a recursive deinterleaving algorithm based on blind signal separation and deep learning to cope with such a situation. The recursive deinterleaving network (RDN) of deep ToA mask (DTM) maps the ToA train to a suitable feature space first. ToA coefficient masks of each radar emitter are estimated with the local and global context information of the radar pulse feature. Then, the RDN sorts out several radar pulse trains recursively with the help of dual-path attention. It also predicts the number of emitters with nearly 100% accuracy and handles the unknown pulse repetition interval (PRI) situation. More accurate pulse deinterleaving results can be obtained if the DTM utilizes more radar parameters through proper preprocessing fine-tuning and postprocessing reclustering. The processing steps of the DTM are introduced in detail. The simulation shows that it can achieve 97% sorting accuracy for multipulse interleaved radar train with jitter PRI and pulse missing. The DTM algorithm can also deal with the interleaved radar signals of different PRI modulations by reclustering with noisy PDW information. On the premise of knowing the modulation type or PRI information, the pulse train deinterleaving accuracy of multimodulation emitters is higher.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2022.3193948</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7285-326X</orcidid><orcidid>https://orcid.org/0000-0003-3949-352X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-04, Vol.59 (2), p.989-1006 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_9844007 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Blind radar pulse sorting deep ToA mask (DTM) Electronic countermeasures Electronic devices Emitters Jitter Modulation Parameters Prediction algorithms Pulse repetition interval Radar Radar countermeasures recursive deinterleaving network (RDN) Sorting Spaceborne radar Vibration |
title | Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20ToA%20Mask-Based%20Recursive%20Radar%20Pulse%20Deinterleaving&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Xiang,%20Haoran&rft.date=2023-04-01&rft.volume=59&rft.issue=2&rft.spage=989&rft.epage=1006&rft.pages=989-1006&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2022.3193948&rft_dat=%3Cproquest_RIE%3E2799860767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799860767&rft_id=info:pmid/&rft_ieee_id=9844007&rfr_iscdi=true |